Spaces:
Runtime error
Runtime error
File size: 7,121 Bytes
04c25c5 c745c39 04c25c5 9b9128d c745c39 1d73b44 8300fa7 1d73b44 c745c39 cd7ba0f c745c39 ba6433f d786de6 e9b47ff ba6433f e9b47ff 1d73b44 ba6433f 369dc1f ba6433f 5d5363d 8300fa7 04c25c5 5d5363d ba6433f 5d5363d ba6433f 5d5363d 04c25c5 c745c39 d7942b7 fb1320e 61da65e 5d5363d 61da65e 04c25c5 5d5363d 34a59de 0d86f5d 04c25c5 185619b 61da65e 0d86f5d 04c25c5 0d86f5d 61da65e 5d5363d ba6433f 5d5363d c745c39 5d5363d ba6433f 9b2cb9f ba6433f 64dcdf0 5d5363d d0d4c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it"
]
clients=[
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]
VERBOSE=False
def load_models(inp):
if VERBOSE==True:
print(type(inp))
print(inp)
print(models[inp])
#client_z.clear()
#client_z.append(InferenceClient(models[inp]))
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def chat_inf(system_prompt,prompt,history,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
#token max=8192
print(client_choice)
hist_len=0
client=clients[int(client_choice)-1]
if not history:
history = []
hist_len=0
if not memory:
memory = []
mem_len=0
if memory:
for ea in memory[0-chat_mem:]:
hist_len+=len(str(ea))
in_len=len(system_prompt+prompt)+hist_len
if (in_len+tokens) > 8000:
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history,memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
if system_prompt:
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p)
else:
formatted_prompt = format_prompt(prompt, memory[0-chat_mem:],cust_p)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)],memory
history.append((prompt,output))
memory.append((prompt,output))
yield history,memory
if VERBOSE==True:
print("\n######### HIST "+str(in_len))
print("\n######### TOKENS "+str(tokens))
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
memory=gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Accordion("Prompt Format",open=False):
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
client_choice.change(load_models,client_choice,[chat_b])
app.load(load_models,client_choice,[chat_b])
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch() |