Spaces:
Running
Running
Upload dalle/models/stage2/layers.py with huggingface_hub
Browse files- dalle/models/stage2/layers.py +140 -0
dalle/models/stage2/layers.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------------
|
2 |
+
# Minimal DALL-E
|
3 |
+
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
|
4 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
5 |
+
# ------------------------------------------------------------------------------------
|
6 |
+
# Modified from minGPT (https://github.com/karpathy/minGPT)
|
7 |
+
# Copyright (c) 2020 Andrej Karpathy. All Rights Reserved.
|
8 |
+
# ------------------------------------------------------------------------------------
|
9 |
+
|
10 |
+
import math
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
from torch.nn import functional as F
|
14 |
+
|
15 |
+
|
16 |
+
class GELU(nn.Module):
|
17 |
+
def __init__(self, use_approx=False):
|
18 |
+
super().__init__()
|
19 |
+
self.use_approx = use_approx
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
if self.use_approx:
|
23 |
+
return x * torch.sigmoid(1.702 * x)
|
24 |
+
else:
|
25 |
+
return F.gelu(x)
|
26 |
+
|
27 |
+
|
28 |
+
class MultiHeadSelfAttention(nn.Module):
|
29 |
+
|
30 |
+
def __init__(self,
|
31 |
+
ctx_len: int,
|
32 |
+
embed_dim: int,
|
33 |
+
n_heads: int,
|
34 |
+
resid_pdrop: float,
|
35 |
+
attn_pdrop: float,
|
36 |
+
attn_bias: bool,
|
37 |
+
use_mask: bool = True):
|
38 |
+
super().__init__()
|
39 |
+
assert embed_dim % n_heads == 0
|
40 |
+
|
41 |
+
# key, query, value projections for all heads
|
42 |
+
self.key = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
|
43 |
+
self.query = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
|
44 |
+
self.value = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
|
45 |
+
|
46 |
+
# regularization
|
47 |
+
self.attn_drop = nn.Dropout(attn_pdrop)
|
48 |
+
self.resid_drop = nn.Dropout(resid_pdrop)
|
49 |
+
|
50 |
+
# output projection
|
51 |
+
self.proj = nn.Linear(embed_dim, embed_dim, attn_bias)
|
52 |
+
|
53 |
+
self.n_heads = n_heads
|
54 |
+
self.ctx_len = ctx_len
|
55 |
+
self.use_mask = use_mask
|
56 |
+
if self.use_mask:
|
57 |
+
self.register_buffer("mask", torch.ones(ctx_len, ctx_len), persistent=False)
|
58 |
+
self.mask = torch.tril(self.mask).view(1, ctx_len, ctx_len)
|
59 |
+
|
60 |
+
def forward(self, x, use_cache=False, layer_past=None):
|
61 |
+
B, T, C = x.shape
|
62 |
+
x = x.transpose(0, 1).contiguous() # (B, T, C) -> (T, B, C)
|
63 |
+
|
64 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
65 |
+
k = self.key(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1) # (B*nh, T, hs)
|
66 |
+
q = self.query(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1) # (B*nh, T, hs)
|
67 |
+
v = self.value(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1) # (B*nh, T, hs)
|
68 |
+
|
69 |
+
if use_cache:
|
70 |
+
present = torch.stack([k, v])
|
71 |
+
|
72 |
+
if layer_past is not None:
|
73 |
+
past_key, past_value = layer_past
|
74 |
+
k = torch.cat([past_key, k], dim=-2)
|
75 |
+
v = torch.cat([past_value, v], dim=-2)
|
76 |
+
|
77 |
+
if use_cache and layer_past is not None:
|
78 |
+
# Tensor shape below: (B * nh, 1, hs) X (B * nh, hs, K) -> (B * nh, 1, K)
|
79 |
+
att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
|
80 |
+
att = F.softmax(att, dim=-1)
|
81 |
+
att = self.attn_drop(att)
|
82 |
+
y = torch.bmm(att, v) # (B*nh, 1, K) X (B*nh, K, hs) -> (B*nh, 1, hs)
|
83 |
+
else:
|
84 |
+
# Tensor shape below: (B * nh, T, hs) X (B * nh, hs, T) -> (B * nh, T, T)
|
85 |
+
att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
|
86 |
+
if self.use_mask:
|
87 |
+
mask = self.mask if T == self.ctx_len else self.mask[:, :T, :T]
|
88 |
+
att = att.masked_fill(mask == 0, float('-inf'))
|
89 |
+
att = F.softmax(att, dim=-1)
|
90 |
+
att = self.attn_drop(att)
|
91 |
+
y = torch.bmm(att, v) # (B*nh, T, T) X (B*nh, T, hs) -> (B*nh, T, hs)
|
92 |
+
y = y.transpose(0, 1).contiguous().view(T, B, C) # re-assemble all head outputs side by side
|
93 |
+
|
94 |
+
# output projection
|
95 |
+
y = self.resid_drop(self.proj(y))
|
96 |
+
if use_cache:
|
97 |
+
return y.transpose(0, 1).contiguous(), present # (T, B, C) -> (B, T, C)
|
98 |
+
else:
|
99 |
+
return y.transpose(0, 1).contiguous() # (T, B, C) -> (B, T, C)
|
100 |
+
|
101 |
+
|
102 |
+
class Block(nn.Module):
|
103 |
+
|
104 |
+
def __init__(self,
|
105 |
+
ctx_len: int,
|
106 |
+
embed_dim: int,
|
107 |
+
n_heads: int,
|
108 |
+
mlp_bias: bool,
|
109 |
+
attn_bias: bool,
|
110 |
+
resid_pdrop: bool,
|
111 |
+
attn_pdrop: bool,
|
112 |
+
gelu_use_approx: bool):
|
113 |
+
super().__init__()
|
114 |
+
self.ln1 = nn.LayerNorm(embed_dim)
|
115 |
+
self.ln2 = nn.LayerNorm(embed_dim)
|
116 |
+
|
117 |
+
self.attn = MultiHeadSelfAttention(ctx_len=ctx_len,
|
118 |
+
embed_dim=embed_dim,
|
119 |
+
n_heads=n_heads,
|
120 |
+
attn_pdrop=attn_pdrop,
|
121 |
+
resid_pdrop=resid_pdrop,
|
122 |
+
attn_bias=attn_bias,
|
123 |
+
use_mask=True)
|
124 |
+
self.mlp = nn.Sequential(
|
125 |
+
nn.Linear(embed_dim, 4 * embed_dim, bias=mlp_bias),
|
126 |
+
GELU(gelu_use_approx),
|
127 |
+
nn.Linear(4 * embed_dim, embed_dim, bias=mlp_bias),
|
128 |
+
nn.Dropout(resid_pdrop),
|
129 |
+
)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
x = x + self.attn(self.ln1(x))
|
133 |
+
x = x + self.mlp(self.ln2(x))
|
134 |
+
return x
|
135 |
+
|
136 |
+
def sample(self, x, layer_past=None):
|
137 |
+
attn, present = self.attn(self.ln1(x), use_cache=True, layer_past=layer_past)
|
138 |
+
x = x + attn
|
139 |
+
x = x + self.mlp(self.ln2(x))
|
140 |
+
return x, present
|