text-to-vid / app.py
Omnibus's picture
Create app.py
a5ec285
raw
history blame
878 Bytes
import gradio as gr
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
# load pipeline
pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# optimize for GPU memory
pipe.enable_model_cpu_offload()
pipe.enable_vae_slicing()
def ttv():
# generate
prompt = "Spiderman is surfing. Darth Vader is also surfing and following Spiderman"
video_frames = pipe(prompt, num_inference_steps=25, num_frames=200).frames
# convent to video
video_path = export_to_video(video_frames)
return video_path
with gr.Blocks() as app:
inp = gr.Textbox()
btn = gr.Button()
outp = gr.Video()
btn.click(ttv,None,outp)
app.launch()