Omnibus commited on
Commit
331b121
·
verified ·
1 Parent(s): 480a424

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -5
app.py CHANGED
@@ -11,7 +11,7 @@ from diffusers import AutoPipelineForImage2Image
11
  from diffusers.utils import make_image_grid, load_image
12
  import uuid
13
 
14
- base_url=f'https://omnibus-top-20-img-img.hf.space/file='
15
  loaded_model=[]
16
  for i,model in enumerate(models):
17
  try:
@@ -21,8 +21,8 @@ for i,model in enumerate(models):
21
  pass
22
  print (loaded_model)
23
 
24
- pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None, variant="fp16", use_safetensors=True).to("cpu")
25
- pipeline.unet = torch.compile(pipeline.unet)
26
 
27
  grid_wide=10
28
 
@@ -63,6 +63,76 @@ def get_concat_v_cut(in1, in2):
63
  def load_model(model_drop):
64
  pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32, use_safetensors=True)
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  def run_dif(prompt,im_path,model_drop,cnt,strength,guidance,infer,im_height,im_width):
67
  uid=uuid.uuid4()
68
  print(f'im_path:: {im_path}')
@@ -251,7 +321,8 @@ with gr.Blocks(css=css) as app:
251
  strength=gr.Slider(label="Strength",minimum=0,maximum=1,step=0.1,value=0.2)
252
  guidance=gr.Slider(label="Guidance",minimum=0,maximum=10,step=0.1,value=8.0)
253
  infer=gr.Slider(label="Inference Steps",minimum=0,maximum=50,step=1,value=10)
254
-
 
255
  with gr.Row():
256
  btn=gr.Button()
257
  stop_btn=gr.Button("Stop")
@@ -271,6 +342,9 @@ with gr.Blocks(css=css) as app:
271
 
272
  im_list=gr.Textbox(visible=False)
273
  im_btn.click(load_im,inp_im,[outp,im_list,im_height,im_width])
274
- go_btn = btn.click(run_dif,[inp,outp,model_drop,cnt,strength,guidance,infer,im_height,im_width],[fin,out_html])
 
 
 
275
  stop_btn.click(None,None,None,cancels=[go_btn])
276
  app.queue().launch()
 
11
  from diffusers.utils import make_image_grid, load_image
12
  import uuid
13
 
14
+ base_url=f'https://omnibus-top-20-img-img-tint.hf.space/file='
15
  loaded_model=[]
16
  for i,model in enumerate(models):
17
  try:
 
21
  pass
22
  print (loaded_model)
23
 
24
+ #pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None, variant="fp16", use_safetensors=True).to("cpu")
25
+ #pipeline.unet = torch.compile(pipeline.unet)
26
 
27
  grid_wide=10
28
 
 
63
  def load_model(model_drop):
64
  pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32, use_safetensors=True)
65
 
66
+
67
+
68
+
69
+ def run_dif_color(out_prompt,im_path,model_drop,tint,im_height,im_width):
70
+ p_seed=""
71
+ out_box=[]
72
+ out_html=""
73
+ for i,ea in enumerate(im_path.root):
74
+ print(f'root::{im_path.root[i]}')
75
+ #print(f'ea:: {ea}')
76
+ #print(f'impath:: {im_path.path}')
77
+ url = base_url+im_path.root[i].image.path
78
+ myimg = cv2.imread(im_path.root[i].image.path)
79
+ avg_color_per_row = numpy.average(myimg, axis=0)
80
+ avg_color = numpy.average(avg_color_per_row, axis=0)
81
+ #print(avg_color)
82
+
83
+ #h=color.lstrip('#')
84
+ #h = input('Enter hex: ').lstrip('#')
85
+ #print('RGB =', tuple(int(h[i:i+2], 16) for i in (0, 2, 4)))
86
+ #color=tuple(int(h[i:i+2], 16) for i in (0, 2, 4))
87
+ r,g,b= avg_color
88
+
89
+ color = (int(r),int(g),int(b))
90
+
91
+
92
+ print (color)
93
+
94
+ #for i,ea in enumerate(loaded_model):
95
+
96
+
97
+
98
+ #for i in range(int(cnt)):
99
+ rand=random.randint(1,500)
100
+ for i in range(rand):
101
+ p_seed+=" "
102
+ try:
103
+ #model=gr.load(f'models/{model[int(model_drop)]}')
104
+ model=loaded_model[int(model_drop)]
105
+ out_img=model(out_prompt+p_seed)
106
+ print(out_img)
107
+
108
+ raw=Image.open(out_img)
109
+ raw=raw.convert('RGB')
110
+
111
+ colorize = RGBTransform().mix_with(color,factor=float(tint)).applied_to(raw)
112
+
113
+ out_box.append(colorize)
114
+ except Exception as e:
115
+ print(e)
116
+ out_html=str(e)
117
+ pass
118
+
119
+ yield out_box,out_html
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
  def run_dif(prompt,im_path,model_drop,cnt,strength,guidance,infer,im_height,im_width):
137
  uid=uuid.uuid4()
138
  print(f'im_path:: {im_path}')
 
321
  strength=gr.Slider(label="Strength",minimum=0,maximum=1,step=0.1,value=0.2)
322
  guidance=gr.Slider(label="Guidance",minimum=0,maximum=10,step=0.1,value=8.0)
323
  infer=gr.Slider(label="Inference Steps",minimum=0,maximum=50,step=1,value=10)
324
+ tint = gr.Slider(label="Tint Strength", minimum=0, maximum=1, step=0.01, value=0.30)
325
+
326
  with gr.Row():
327
  btn=gr.Button()
328
  stop_btn=gr.Button("Stop")
 
342
 
343
  im_list=gr.Textbox(visible=False)
344
  im_btn.click(load_im,inp_im,[outp,im_list,im_height,im_width])
345
+
346
+ go_btn=btn.click(run_dif_color,[inp,outp,model_drop,tint,im_height,im_width],[fingal,out_html])
347
+
348
+ #go_btn = btn.click(run_dif_color,[inp,outp,model_drop,cnt,strength,guidance,infer,im_height,im_width],[fin,out_html])
349
  stop_btn.click(None,None,None,cancels=[go_btn])
350
  app.queue().launch()