import gradio as gr from models import models from PIL import Image import requests import uuid import io import base64 import torch from diffusers import AutoPipelineForImage2Image from diffusers.utils import make_image_grid, load_image import uuid base_url=f'https://omnibus-top-20-img-img.hf.space/file=' loaded_model=[] for i,model in enumerate(models): try: loaded_model.append(gr.load(f'models/{model}')) except Exception as e: print(e) pass print (loaded_model) pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None, variant="fp16", use_safetensors=True).to("cpu") pipeline.unet = torch.compile(pipeline.unet) grid_wide=10 def get_concat_h_cut(in1, in2): #im1=Image.open(in1) #im2=Image.open(in2) im1=in1 im2=in2 dst = Image.new('RGB', (im1.width + im2.width, min(im1.height, im2.height))) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst def get_concat_v_cut(in1, in2): #im1=Image.open(in1) #im2=Image.open(in2) im1=in1 im2=in2 dst = Image.new( 'RGB', (min(im1.width, im2.width), im1.height + im2.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (0, im1.height)) return dst def load_model(model_drop): pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float32, use_safetensors=True) def run_dif(prompt,im_path,model_drop,cnt,strength,guidance,infer,im_height,im_width): uid=uuid.uuid4() print(f'im_path:: {im_path}') print(f'im_path0:: {im_path.root[0]}') print(f'im_path0.image.path:: {im_path.root[0].image.path}') out_box=[] im_height=int(im_height) im_width=int(im_width) for i,ea in enumerate(im_path.root): for hh in range(int(im_height/grid_wide)): for b in range(int(im_width/grid_wide)): print(f'root::{im_path.root[i]}') #print(f'ea:: {ea}') #print(f'impath:: {im_path.path}') url = base_url+im_path.root[i].image.path print(url) #init_image = load_image(url) init_image=load_image(url) #prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k" # pass prompt and image to pipeline #image = pipeline(prompt, image=init_image, strength=0.8,guidance_scale=8.0,negative_prompt=negative_prompt,num_inference_steps=50).images[0] image = pipeline(prompt, image=init_image, strength=float(strength),guidance_scale=float(guidance),num_inference_steps=int(infer)).images[0] #make_image_grid([init_image, image], rows=1, cols=2) out_box.append(image) if out_box: if len(out_box)>1: im_roll = get_concat_v_cut(f'{out_box[0]}',f'{out_box[1]}') im_roll.save(f'comb-{uid}-tmp.png') for i in range(2,len(out_box)): im_roll = get_concat_v_cut(f'comb-{uid}-tmp.png',f'{out_box[i]}') im_roll.save(f'comb-{uid}-tmp.png') out = f'comb-{uid}-tmp.png' else: #tmp_im = Image.open(out_box[0]) tmp_im = out_box[0] tmp_im.save(f'comb-{uid}-tmp.png') out = f'comb-{uid}-tmp.png' yield out,"" def run_dif_old(out_prompt,model_drop,cnt): p_seed="" out_box=[] out_html="" #for i,ea in enumerate(loaded_model): for i in range(int(cnt)): p_seed+=" " try: model=loaded_model[int(model_drop)] out_img=model(out_prompt+p_seed) print(out_img) out_box.append(out_img) except Exception as e: print(e) out_html=str(e) pass yield out_box,out_html def run_dif_og(out_prompt,model_drop,cnt): out_box=[] out_html="" #for i,ea in enumerate(loaded_model): for i in range(cnt): try: #print (ea) model=loaded_model[int(model_drop)] out_img=model(out_prompt) print(out_img) url=f'https://omnibus-top-20.hf.space/file={out_img}' print(url) uid = uuid.uuid4() #urllib.request.urlretrieve(image, 'tmp.png') #out=Image.open('tmp.png') r = requests.get(url, stream=True) if r.status_code == 200: img_buffer = io.BytesIO(r.content) print (f'bytes:: {io.BytesIO(r.content)}') str_equivalent_image = base64.b64encode(img_buffer.getvalue()).decode() img_tag = "" out_html+=f"