File size: 9,624 Bytes
a72119e
 
 
 
 
 
496112d
a2b9299
496112d
 
8365126
 
 
0791cf5
9248f9f
a8fd4c9
a72119e
0af2d38
22b8c91
 
9248f9f
a72119e
a8fd4c9
22b8c91
9248f9f
a8fd4c9
9248f9f
 
262a1a2
 
 
 
 
 
a72119e
1f22cbc
a8fd4c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9248f9f
de54836
03bd99a
55e1949
2439bae
7b27191
a2b9299
0f83d78
6785fcb
a2b9299
0f83d78
 
a2b9299
 
 
 
 
a8fd4c9
a2b9299
6764406
262a1a2
6764406
262a1a2
55e1949
0f83d78
a2b9299
0f83d78
a2b9299
0f83d78
a2b9299
0f83d78
262a1a2
fb480c5
262a1a2
a2b9299
0791cf5
e87311d
05b4e29
a8fd4c9
 
 
 
03bd99a
 
6785fcb
a2b9299
6764406
262a1a2
a2b9299
 
 
05b4e29
 
 
 
262a1a2
7b27191
 
a8fd4c9
a2b9299
a8fd4c9
262a1a2
55e1949
0f83d78
7b27191
 
6764406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2dafa
a8fd4c9
4902bd9
70e42a3
b1d6fce
d3daa33
402afc5
4902bd9
d3daa33
 
 
 
 
 
402afc5
d3daa33
402afc5
 
 
 
55e1949
402afc5
e5e4f17
03bd99a
e87311d
a8fd4c9
d3daa33
 
 
55e1949
 
 
 
 
d3daa33
55e1949
 
d3daa33
55e1949
d3daa33
 
 
55e1949
1b81f82
55e1949
 
 
 
7b27191
0f83d78
d3daa33
 
 
26a50b2
b8c17c8
2189235
0f83d78
e87311d
7b27191
2189235
d3daa33
a72119e
9248f9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
import time
import threading
from concurrent.futures import ThreadPoolExecutor

torch.set_float32_matmul_precision("medium")
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load both BiRefNet models
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True)
birefnet.to(device)
birefnet_lite = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet_lite", trust_remote_code=True)
birefnet_lite.to(device)

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

# Function to process a single frame
def process_frame(frame, bg_type, bg, fast_mode, bg_frame_index, background_frames, color):
    try:
        pil_image = Image.fromarray(frame)
        if bg_type == "Color":
            processed_image = process(pil_image, color, fast_mode)
        elif bg_type == "Image":
            processed_image = process(pil_image, bg, fast_mode)
        elif bg_type == "Video":
            background_frame = background_frames[bg_frame_index % len(background_frames)]
            bg_frame_index += 1
            background_image = Image.fromarray(background_frame)
            processed_image = process(pil_image, background_image, fast_mode)
        else:
            processed_image = pil_image  # Default to original image if no background is selected
        return np.array(processed_image), bg_frame_index
    except Exception as e:
        print(f"Error processing frame: {e}")
        return frame, bg_frame_index

@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True, max_workers=5):
    try:
        start_time = time.time()  # Start the timer

        # Load the video using moviepy
        video = mp.VideoFileClip(vid)

        # Load original fps if fps value is equal to 0
        if fps == 0:
            fps = video.fps

        # Extract audio from the video
        audio = video.audio

        # Extract frames at the specified FPS
        frames = list(video.iter_frames(fps=fps))

        # Process each frame for background removal
        processed_frames = []
        yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds"

        if bg_type == "Video":
            background_video = mp.VideoFileClip(bg_video)
            if background_video.duration < video.duration:
                if video_handling == "slow_down":
                    background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
                else:  # video_handling == "loop"
                    background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
            background_frames = list(background_video.iter_frames(fps=fps))  # Convert to list
        else:
            background_frames = None

        bg_frame_index = 0  # Initialize background frame index

        # Use ThreadPoolExecutor for parallel processing with specified max_workers
        with ThreadPoolExecutor(max_workers=max_workers) as executor: 
            futures = [executor.submit(process_frame, frames[i], bg_type, bg_image, fast_mode, bg_frame_index, background_frames, color) for i in range(len(frames))]
            for future in futures:
                result, bg_frame_index = future.result()
                processed_frames.append(result)
                elapsed_time = time.time() - start_time
                yield result, None, f"Processing frame {len(processed_frames)}... Elapsed time: {elapsed_time:.2f} seconds"

        # Create a new video from the processed frames
        processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)

        # Add the original audio back to the processed video
        processed_video = processed_video.set_audio(audio)

        # Save the processed video to a temporary file using tempfile
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
            temp_filepath = temp_file.name
            processed_video.write_videofile(temp_filepath, codec="libx264")

        elapsed_time = time.time() - start_time
        yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"

        # Return the path to the temporary file
        yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds"

    except Exception as e:
        print(f"Error: {e}")
        elapsed_time = time.time() - start_time
        yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"
        yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds"

def process(image, bg, fast_mode=False):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")

    # Select the model based on fast_mode
    model = birefnet_lite if fast_mode else birefnet

    # Prediction
    with torch.no_grad():
        preds = model(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)

    if isinstance(bg, str) and bg.startswith("#"):
        color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
        background = Image.new("RGBA", image_size, color_rgb + (255,))
    elif isinstance(bg, Image.Image):
        background = bg.convert("RGBA").resize(image_size)
    else:
        background = Image.open(bg).convert("RGBA").resize(image_size)

    # Composite the image onto the background using the mask
    image = Image.composite(image, background, mask)
    return image

with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200 frames at once. So, if you have a big video than use small chunks or Duplicate this space.")
    with gr.Row():
        in_video = gr.Video(label="Input Video", interactive=True)
        stream_image = gr.Image(label="Streaming Output", visible=False)
        out_video = gr.Video(label="Final Output Video")
    submit_button = gr.Button("Change Background", interactive=True)
    with gr.Row():
        fps_slider = gr.Slider(
            minimum=0,
            maximum=60,
            step=1,
            value=0,
            label="Output FPS (0 will inherit the original fps value)",
            interactive=True
        )
        bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
        color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
        bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
        bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
        with gr.Column(visible=False) as video_handling_options:
            video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)
        fast_mode_checkbox = gr.Checkbox(label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True)
        max_workers_slider = gr.Slider( minimum=1, maximum=32, step=1, value=5, label="Max Workers", info="Determines how many Franes to process parallel", interactive=True
        )
    time_textbox = gr.Textbox(label="Time Elapsed", interactive=False)  # Add time textbox

    def update_visibility(bg_type):
        if bg_type == "Color":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Image":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Video":
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


    bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])


    examples = gr.Examples(
        [
            ["rickroll-2sec.mp4", "Video", None, "background.mp4"],
            ["rickroll-2sec.mp4", "Image", "images.webp", None],
            ["rickroll-2sec.mp4", "Color", None, None],
        ],
        inputs=[in_video, bg_type, bg_image, bg_video],
        outputs=[stream_image, out_video, time_textbox],
        fn=fn,
        cache_examples=True,
        cache_mode="eager",
    )


    submit_button.click(
        fn,
        inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio, fast_mode_checkbox, max_workers_slider],
        outputs=[stream_image, out_video, time_textbox],
    )

if __name__ == "__main__":
    demo.launch(show_error=True)