Spaces:
Runtime error
Runtime error
import gradio as gr | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
import moviepy.editor as mp | |
from pydub import AudioSegment | |
from PIL import Image | |
import numpy as np | |
import os | |
import tempfile | |
import uuid | |
import time | |
import threading | |
from queue import Queue | |
torch.set_float32_matmul_precision("medium") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load both BiRefNet models | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to(device) | |
birefnet_lite = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet_lite", trust_remote_code=True | |
) | |
birefnet_lite.to(device) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
# Function to delete files older than 10 minutes in the temp directory | |
def cleanup_temp_files(): | |
while True: | |
temp_dir = "temp" | |
if os.path.exists(temp_dir): | |
for filename in os.listdir(temp_dir): | |
filepath = os.path.join(temp_dir, filename) | |
if os.path.isfile(filepath): | |
file_age = time.time() - os.path.getmtime(filepath) | |
if file_age > 600: # 10 minutes in seconds | |
try: | |
os.remove(filepath) | |
print(f"Deleted temporary file: {filepath}") | |
except Exception as e: | |
print(f"Error deleting file {filepath}: {e}") | |
time.sleep(60) # Check every minute | |
# Start the cleanup thread | |
cleanup_thread = threading.Thread(target=cleanup_temp_files, daemon=True) | |
cleanup_thread.start() | |
# Function to process frames in a separate thread | |
def process_frame(image, bg, fast_mode, result_queue): | |
processed_image = process(image, bg, fast_mode) | |
result_queue.put(processed_image) | |
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down", fast_mode=True): | |
try: | |
start_time = time.time() | |
# Load the video using moviepy | |
video = mp.VideoFileClip(vid) | |
# Load original fps if fps value is equal to 0 | |
if fps == 0: | |
fps = video.fps | |
# Extract audio from the video | |
audio = video.audio | |
# Extract frames at the specified FPS | |
frames = video.iter_frames(fps=fps) | |
# Process each frame for background removal | |
processed_frames = [] | |
yield gr.update(visible=True), gr.update(visible=False), f"Processing started... Elapsed time: 0 seconds" | |
if bg_type == "Video": | |
background_video = mp.VideoFileClip(bg_video) | |
if background_video.duration < video.duration: | |
if video_handling == "slow_down": | |
background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration) | |
else: # video_handling == "loop" | |
background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1)) | |
background_frames = list(background_video.iter_frames(fps=fps)) # Convert to list | |
else: | |
background_frames = None | |
bg_frame_index = 0 # Initialize background frame index | |
threads = [] | |
result_queue = Queue() | |
frame_batch_size = 4 # Process 4 frames at a time | |
for i, frame in enumerate(frames): | |
pil_image = Image.fromarray(frame) | |
if bg_type == "Color": | |
background_image = color # Use color directly for threads | |
elif bg_type == "Image": | |
background_image = bg_image | |
elif bg_type == "Video": | |
if video_handling == "slow_down": | |
background_frame = background_frames[bg_frame_index % len(background_frames)] | |
bg_frame_index += 1 | |
background_image = Image.fromarray(background_frame) | |
else: # video_handling == "loop" | |
background_frame = background_frames[bg_frame_index % len(background_frames)] | |
bg_frame_index += 1 | |
background_image = Image.fromarray(background_frame) | |
else: | |
background_image = None # Default to no background | |
# Start a new thread to process the frame | |
thread = threading.Thread(target=process_frame, args=(pil_image, background_image, fast_mode, result_queue)) | |
threads.append(thread) | |
thread.start() | |
# If we have enough threads running or it's the last frame, wait for results | |
if len(threads) == frame_batch_size or i == len(list(frames)) - 1: | |
for thread in threads: | |
thread.join() | |
while not result_queue.empty(): | |
processed_frames.append(np.array(result_queue.get())) | |
threads = [] # Reset the threads list | |
elapsed_time = time.time() - start_time | |
# Yield the first processed image from the current batch | |
yield processed_frames[-len(threads) if threads else -frame_batch_size], None, f"Processing frame {i+1}... Elapsed time: {elapsed_time:.2f} seconds" | |
# Create a new video from the processed frames | |
processed_video = mp.ImageSequenceClip(processed_frames, fps=fps) | |
# Add the original audio back to the processed video | |
processed_video = processed_video.set_audio(audio) | |
# Save the processed video to a temporary file | |
temp_dir = "temp" | |
os.makedirs(temp_dir, exist_ok=True) | |
unique_filename = str(uuid.uuid4()) + ".mp4" | |
temp_filepath = os.path.join(temp_dir, unique_filename) | |
processed_video.write_videofile(temp_filepath, codec="libx264") | |
elapsed_time = time.time() - start_time | |
yield gr.update(visible=False), gr.update(visible=True), f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" | |
# Return the path to the temporary file | |
yield processed_frames[-1], temp_filepath, f"Processing complete! Elapsed time: {elapsed_time:.2f} seconds" | |
except Exception as e: | |
print(f"Error: {e}") | |
elapsed_time = time.time() - start_time | |
yield gr.update(visible=False), gr.update(visible=True), f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" | |
yield None, f"Error processing video: {e}", f"Error processing video: {e}. Elapsed time: {elapsed_time:.2f} seconds" | |
def process(image, bg, fast_mode=False): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cuda") | |
# Select the model based on fast_mode | |
model = birefnet_lite if fast_mode else birefnet | |
# Prediction | |
with torch.no_grad(): | |
preds = model(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
if isinstance(bg, str) and bg.startswith("#"): | |
color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5)) | |
background = Image.new("RGBA", image_size, color_rgb + (255,)) | |
elif isinstance(bg, Image.Image): | |
background = bg.convert("RGBA").resize(image_size) | |
else: | |
background = Image.open(bg).convert("RGBA").resize(image_size) | |
# Composite the image onto the background using the mask | |
image = Image.composite(image, background, mask) | |
return image | |
with gr.Blocks(theme=gr.themes.Ocean()) as demo: | |
gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.") | |
with gr.Row(): | |
in_video = gr.Video(label="Input Video", interactive=True) | |
stream_image = gr.Image(label="Streaming Output", visible=False) | |
out_video = gr.Video(label="Final Output Video") | |
submit_button = gr.Button("Change Background", interactive=True) | |
with gr.Row(): | |
fps_slider = gr.Slider( | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=0, | |
label="Output FPS (0 will inherit the original fps value)", | |
interactive=True | |
) | |
bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True) | |
color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True) | |
bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True) | |
bg_video = gr.Video(label="Background Video", visible=False, interactive=True) | |
with gr.Column(visible=False) as video_handling_options: | |
video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True) | |
fast_mode_checkbox = gr.Checkbox(label="Fast Mode (Use BiRefNet_lite)", value=True, interactive=True) | |
time_textbox = gr.Textbox(label="Time Elapsed", interactive=False) # Add time textbox | |
def update_visibility(bg_type): | |
if bg_type == "Color": | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
elif bg_type == "Image": | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
elif bg_type == "Video": | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
else: | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options]) | |
examples = gr.Examples( | |
[ | |
["rickroll-2sec.mp4", "Video", None, "background.mp4"], | |
["rickroll-2sec.mp4", "Image", "images.webp", None], | |
["rickroll-2sec.mp4", "Color", None, None], | |
], | |
inputs=[in_video, bg_type, bg_image, bg_video], | |
outputs=[stream_image, out_video, time_textbox], | |
fn=fn, | |
cache_examples=True, | |
cache_mode="eager", | |
) | |
submit_button.click( | |
fn, | |
inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio, fast_mode_checkbox], | |
outputs=[stream_image, out_video, time_textbox], | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |