File size: 7,649 Bytes
a60cc48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.models as models
from torchvision.models import ResNet50_Weights
import gradio as gr
import pickle


class Vocabulary:
    def __init__(self, freq_threshold=5):
        self.freq_threshold = freq_threshold
        # self.itos = {0: "<pad>", 1: "<start>", 2: "<end>", 3: "<unk>"}
        self.itos = {0: "pad", 1: "startofseq", 2: "endofseq", 3: "unk"}
        self.stoi = {v: k for k, v in self.itos.items()}
        self.index = 4

    def __len__(self):
        return len(self.itos)

    def tokenizer(self, text):
        text = text.lower()
        tokens = re.findall(r"\w+", text)
        return tokens

    def build_vocabulary(self, sentence_list):
        frequencies = Counter()
        for sentence in sentence_list:
            tokens = self.tokenizer(sentence)
            frequencies.update(tokens)

        for word, freq in frequencies.items():
            if freq >= self.freq_threshold:
                self.stoi[word] = self.index
                self.itos[self.index] = word
                self.index += 1

    def numericalize(self, text):
        tokens = self.tokenizer(text)
        numericalized = []
        for token in tokens:
            if token in self.stoi:
                numericalized.append(self.stoi[token])
            else:
                numericalized.append(self.stoi["<unk>"])
        return numericalized


# You'll need to ensure these match your train.py
EMBED_DIM = 256
HIDDEN_DIM = 512
MAX_SEQ_LENGTH = 25
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DEVICE = "cpu"

# Where you saved your model in train.py
# MODEL_SAVE_PATH = "best_checkpoint.pth"
MODEL_SAVE_PATH = "final_model.pth"

with open("vocab.pkl", "rb") as f:
    vocab = pickle.load(f)

print(vocab)

vocab_size = len(vocab)

print(vocab_size)


# -----------------------------------------------------------------
# 2. Model (Must match structure in train.py)
# -----------------------------------------------------------------
class ResNetEncoder(nn.Module):
    def __init__(self, embed_dim):
        super().__init__()
        resnet = models.resnet50(weights=ResNet50_Weights.DEFAULT)
        for param in resnet.parameters():
            param.requires_grad = True
        modules = list(resnet.children())[:-1]
        self.resnet = nn.Sequential(*modules)

        self.fc = nn.Linear(resnet.fc.in_features, embed_dim)
        self.batch_norm = nn.BatchNorm1d(embed_dim, momentum=0.01)

    def forward(self, images):
        with torch.no_grad():
            features = self.resnet(images)  # (batch_size, 2048, 1, 1)
        features = features.view(features.size(0), -1)
        features = self.fc(features)
        features = self.batch_norm(features)
        return features


class DecoderLSTM(nn.Module):
    def __init__(self, embed_dim, hidden_dim, vocab_size, num_layers=1):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.lstm = nn.LSTM(embed_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim, vocab_size)

    def forward(self, features, captions, states):
        # remove the last token for input
        captions_in = captions
        emb = self.embedding(captions_in)
        features = features.unsqueeze(1)

        # print(features.shape)
        # print(emb.shape)

        lstm_input = torch.cat((features, emb), dim=1)
        outputs, returned_states = self.lstm(lstm_input, states)
        logits = self.fc(outputs)
        return logits, returned_states

    def generate(self, features, max_len=20):
        """
        Greedy generation from the features as initial context.
        """
        batch_size = features.size(0)
        states = None
        generated_captions = []

        start_idx = 1  # <start>
        end_idx = 2  # <end>

        inputs = features
        # current_tokens = torch.LongTensor([start_idx] * batch_size).to(features.device).unsqueeze(0)
        current_tokens = [start_idx]

        for _ in range(max_len):
            input_tokens = torch.LongTensor(current_tokens).to(features.device).unsqueeze(0)
            logits, states = self.forward(inputs, input_tokens, states)

            logits = logits.contiguous().view(-1, vocab_size)
            predicted = logits.argmax(dim=1)[-1].item()

            generated_captions.append(predicted)
            current_tokens.append(predicted)

            # check if all ended
            # all_ended = True
            # for i, w in enumerate(predicted.numpy()):
            #     print(w)
            #     if w != end_idx:
            #         all_ended = False
            #         break
            # if all_ended:
            #     break

        return generated_captions


class ImageCaptioningModel(nn.Module):
    def __init__(self, encoder, decoder):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder

    def generate(self, images, max_len=MAX_SEQ_LENGTH):
        features = self.encoder(images)
        return self.decoder.generate(features, max_len=max_len)


# -----------------------------------------------------------------
# 3. LOAD THE TRAINED MODEL
# -----------------------------------------------------------------
def load_trained_model():
    encoder = ResNetEncoder(embed_dim=EMBED_DIM)
    decoder = DecoderLSTM(EMBED_DIM, HIDDEN_DIM, vocab_size)
    model = ImageCaptioningModel(encoder, decoder).to(DEVICE)

    # Load weights from disk
    state_dict = torch.load(MODEL_SAVE_PATH, map_location=DEVICE)
    model.load_state_dict(state_dict["model_state_dict"])
    model.eval()
    # print(model)
    return model


model = load_trained_model()

# -----------------------------------------------------------------
# 4. INFERENCE FUNCTION (FOR GRADIO)
# -----------------------------------------------------------------
transform_inference = transforms.Compose(
    [
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)


def generate_caption_for_image(img):
    """
    Gradio callback: takes a PIL image, returns a string caption.
    """
    pil_img = img.convert("RGB")
    img_tensor = transform_inference(pil_img).unsqueeze(0).to(DEVICE)

    with torch.no_grad():
        output_indices = model.generate(img_tensor, max_len=MAX_SEQ_LENGTH)
    # output_indices is a list of lists. For 1 image, output_indices[0].
    idx_list = output_indices

    result_words = []
    # end_token_idx = vocab.stoi["<end>"]
    end_token_idx = vocab.stoi["endofseq"]
    for idx in idx_list:
        if idx == end_token_idx:
            break
        # word = vocab.itos.get(idx, "<unk>")
        word = vocab.itos.get(idx, "unk")
        # skip <start>/<pad> in final output
        # if word not in ["<start>", "<pad>", "<end>"]:
        if word not in ["startofseq", "pad", "endofseq"]:
            result_words.append(word)
    return " ".join(result_words)


# -----------------------------------------------------------------
# 5. BUILD GRADIO INTERFACE
# -----------------------------------------------------------------
def main():
    iface = gr.Interface(
        fn=generate_caption_for_image,
        inputs=gr.Image(type="pil"),
        outputs="text",
        title="Image Captioning (ResNet + LSTM)",
        description="Upload an image to get a generated caption from the trained model.",
    )
    iface.launch(share=True)


if __name__ == "__main__":
    print("Loaded model. Starting Gradio interface...")
    main()