Ankan Ghosh commited on
Commit
43e9b6c
·
verified ·
1 Parent(s): 29159ad

Upload 5 files

Browse files
Files changed (6) hide show
  1. .gitattributes +3 -0
  2. app.py +114 -0
  3. requirements.txt +3 -0
  4. sample/car.mp4 +3 -0
  5. sample/home.mp4 +3 -0
  6. sample/motion_test.mp4 +3 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ sample/car.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ sample/home.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ sample/motion_test.mp4 filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+
6
+ # input_video = './sample/car.mp4'
7
+
8
+ # video Inference
9
+ def vid_inf(vid_path, contour_thresh):
10
+ # Create a VideoCapture object
11
+ cap = cv2.VideoCapture(vid_path)
12
+
13
+ # get the video frames' width and height for proper saving of videos
14
+ frame_width = int(cap.get(3))
15
+ frame_height = int(cap.get(4))
16
+ fps = int(cap.get(cv2.CAP_PROP_FPS))
17
+ frame_size = (frame_width, frame_height)
18
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
19
+ output_video = "output_recorded.mp4"
20
+
21
+ # create the `VideoWriter()` object
22
+ out = cv2.VideoWriter(output_video, fourcc, fps, frame_size)
23
+
24
+ # Create Background Subtractor MOG2 object
25
+ backSub = cv2.createBackgroundSubtractorMOG2(history=200, varThreshold=25, detectShadows=True)
26
+ # print(dir(backSub))
27
+
28
+ # Check if camera opened successfully
29
+ if not cap.isOpened():
30
+ print("Error opening video file")
31
+ count = 0
32
+ # Read until video is completed
33
+ while cap.isOpened():
34
+ # Capture frame-by-frame
35
+ ret, frame = cap.read()
36
+ # print(frame.shape)
37
+ if ret:
38
+ # Apply background subtraction
39
+ fg_mask = backSub.apply(frame)
40
+ # print(fg_mask.shape)
41
+ # fg_mask = cv2.resize(fg_mask, (640,480))
42
+ # print(fg_mask.shape)
43
+ # cv2.imshow('Frame_bg', fg_mask)
44
+
45
+ # apply global threshol to remove shadows
46
+ retval, mask_thresh = cv2.threshold(
47
+ fg_mask, 200, 255, cv2.THRESH_BINARY)
48
+ # cv2.imshow('frame_thresh', mask_thresh)
49
+
50
+ # set the kernal
51
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
52
+ # Apply erosion
53
+ mask_eroded = cv2.morphologyEx(mask_thresh, cv2.MORPH_OPEN, kernel)
54
+ # mask_eroded = cv2.resize(mask_eroded, (640,480))
55
+ # cv2.imshow('frame_erode', mask_eroded)
56
+
57
+ # Find contours
58
+ contours, hierarchy = cv2.findContours(
59
+ mask_eroded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
60
+ # print(contours)
61
+
62
+ min_contour_area = contour_thresh # Define your minimum area threshold
63
+ large_contours = [
64
+ cnt for cnt in contours if cv2.contourArea(cnt) > min_contour_area]
65
+ # frame_ct = cv2.drawContours(frame, large_contours, -1, (0, 255, 0), 2)
66
+ frame_out = frame.copy()
67
+ for cnt in large_contours:
68
+ # print(cnt.shape)
69
+ x, y, w, h = cv2.boundingRect(cnt)
70
+ frame_out = cv2.rectangle(frame_out, (x, y), (x+w, y+h), (0, 0, 200), 3)
71
+ frame_out_final = cv2.cvtColor(frame_out, cv2.COLOR_BGR2RGB)
72
+ vid = out.write(frame_out)
73
+
74
+ # Display the resulting frame
75
+ # resized_frame = cv2.resize(frame_out, (640,480))
76
+ # cv2.imshow('Frame_final', frame_out)
77
+
78
+ # update the count every frame and display every 12th frame
79
+ if not count % 12:
80
+ yield frame_out_final, None
81
+ count += 1
82
+
83
+ # Press Q on keyboard to exit
84
+ if cv2.waitKey(25) & 0xFF == ord('q'):
85
+ break
86
+ else:
87
+ break
88
+
89
+ # When everything done, release the video capture and writer object
90
+ cap.release()
91
+ out.release()
92
+ # Closes all the frames
93
+ cv2.destroyAllWindows()
94
+ yield None, output_video
95
+
96
+ # vid_inf(input_video)
97
+
98
+
99
+ # gradio interface
100
+ input_video = gr.Video(label="Input Video")
101
+ contour_thresh = gr.Slider(0, 10000, value=4, label="Contour Threshold", info="Adjust the Countour Threshold according to the object size that you want to detect.")
102
+ output_frames = gr.Image(label="Output Frames")
103
+ output_video_file = gr.Video(label="Output video")
104
+
105
+ app = gr.Interface(
106
+ fn=vid_inf,
107
+ inputs=[input_video, contour_thresh],
108
+ outputs=[output_frames, output_video_file],
109
+ title=f"Motion Detection using OpenCV",
110
+ description=f'A gradio app for dynamic video analysis tool that leverages advanced background subtraction and contour detection techniques to identify and track moving objects in real-time.',
111
+ allow_flagging="never",
112
+ examples=[["./sample/car.mp4"], ["./sample/motion_test.mp4"], ["./sample/home.mp4"]],
113
+ )
114
+ app.queue().launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ opencv-contrib-python
2
+ numpy
3
+ gradio
sample/car.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7f7287faa231cf287c433ef8b2f38949e214cac9c473aea286d75f2bdea2330
3
+ size 4708643
sample/home.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6f269d372f84dcc2bb8317f7be2db05173bcc42a8433e28ede51ffca7f8265d
3
+ size 2853355
sample/motion_test.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20090f4160519b776e1fb855617d2268745e826e07d81f1eab4a588df43628cf
3
+ size 17887070