File size: 7,807 Bytes
ab9cd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13bbe81
ab9cd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13bbe81
ab9cd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import copy
import os
import random
import urllib.request

import torch
import torch.nn.functional as FF
import torch.optim
from torchvision import utils
from tqdm import tqdm

from stylegan2.model import Generator


class DownloadProgressBar(tqdm):
    def update_to(self, b=1, bsize=1, tsize=None):
        if tsize is not None:
            self.total = tsize
        self.update(b * bsize - self.n)


def get_path(base_path):
    BASE_DIR = os.path.join('checkpoints')

    save_path = os.path.join(BASE_DIR, base_path)
    if not os.path.exists(save_path):
        url = f"https://huggingface.co/aaronb/StyleGAN2/resolve/main/{base_path}"
        print(f'{base_path} not found')
        print('Try to download from huggingface: ', url)
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        download_url(url, save_path)
        print('Downloaded to ', save_path)
    return save_path


def download_url(url, output_path):
    with DownloadProgressBar(unit='B', unit_scale=True,
                             miniters=1, desc=url.split('/')[-1]) as t:
        urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to)


class CustomGenerator(Generator):
    def prepare(
        self,
        styles,
        inject_index=None,
        truncation=1,
        truncation_latent=None,
        input_is_latent=False,
        noise=None,
        randomize_noise=True,
    ):
        if not input_is_latent:
            styles = [self.style(s) for s in styles]

        if noise is None:
            if randomize_noise:
                noise = [None] * self.num_layers
            else:
                noise = [
                    getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
                ]

        if truncation < 1:
            style_t = []

            for style in styles:
                style_t.append(
                    truncation_latent + truncation * (style - truncation_latent)
                )

            styles = style_t

        if len(styles) < 2:
            inject_index = self.n_latent

            if styles[0].ndim < 3:
                latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)

            else:
                latent = styles[0]

        else:
            if inject_index is None:
                inject_index = random.randint(1, self.n_latent - 1)

            latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
            latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)

            latent = torch.cat([latent, latent2], 1)

        return latent, noise

    def generate(
        self,
        latent,
        noise,
    ):
        out = self.input(latent)
        out = self.conv1(out, latent[:, 0], noise=noise[0])

        skip = self.to_rgb1(out, latent[:, 1])
        i = 1
        for conv1, conv2, noise1, noise2, to_rgb in zip(
            self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
        ):
            out = conv1(out, latent[:, i], noise=noise1)
            out = conv2(out, latent[:, i + 1], noise=noise2)
            skip = to_rgb(out, latent[:, i + 2], skip)
            if out.shape[-1] == 256: F = out
            i += 2

        image = skip
        F = FF.interpolate(F, image.shape[-2:], mode='bilinear')
        return image, F


def stylegan2(
    size=1024,
    channel_multiplier=2,
    latent=512,
    n_mlp=8,
    ckpt='stylegan2-ffhq-config-f.pt'
):
    g_ema = CustomGenerator(size, latent, n_mlp, channel_multiplier=channel_multiplier)
    checkpoint = torch.load(get_path(ckpt))
    g_ema.load_state_dict(checkpoint["g_ema"], strict=False)
    g_ema.requires_grad_(False)
    g_ema.eval()
    return g_ema


def bilinear_interpolate_torch(im, y, x):
    """
    im : B,C,H,W
    y : 1,numPoints -- pixel location y float
    x : 1,numPOints -- pixel location y float
    """
    device = im.device
    
    x0 = torch.floor(x).long().to(device)
    x1 = x0 + 1

    y0 = torch.floor(y).long().to(device)
    y1 = y0 + 1

    wa = ((x1.float() - x) * (y1.float() - y)).to(device)
    wb = ((x1.float() - x) * (y - y0.float())).to(device)
    wc = ((x - x0.float()) * (y1.float() - y)).to(device)
    wd = ((x - x0.float()) * (y - y0.float())).to(device)
    # Instead of clamp
    x1 = x1 - torch.floor(x1 / im.shape[3]).int().to(device)
    y1 = y1 - torch.floor(y1 / im.shape[2]).int().to(device)
    Ia = im[:, :, y0, x0]
    Ib = im[:, :, y1, x0]
    Ic = im[:, :, y0, x1]
    Id = im[:, :, y1, x1]

    return Ia * wa + Ib * wb + Ic * wc + Id * wd


def drag_gan(g_ema, latent: torch.Tensor, noise, F, handle_points, target_points, mask, max_iters=1000):
    handle_points0 = copy.deepcopy(handle_points)
    n = len(handle_points)
    r1, r2, lam, d = 3, 12, 20, 1

    def neighbor(x, y, d):
        points = []
        for i in range(x - d, x + d):
            for j in range(y - d, y + d):
                points.append(torch.tensor([i, j]).float().to(latent.device))
        return points

    F0 = F.detach().clone()

    latent_trainable = latent[:, :6, :].detach().clone().requires_grad_(True)
    latent_untrainable = latent[:, 6:, :].detach().clone().requires_grad_(False)
    optimizer = torch.optim.Adam([latent_trainable], lr=2e-3)
    for iter in range(max_iters):
        for s in range(1):
            optimizer.zero_grad()
            latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
            sample2, F2 = g_ema.generate(latent, noise)

            # motion supervision
            loss = 0
            for i in range(n):
                pi, ti = handle_points[i], target_points[i]
                di = (ti - pi) / torch.sum((ti - pi)**2)

                for qi in neighbor(int(pi[0]), int(pi[1]), r1):
                    # f1 = F[..., int(qi[0]), int(qi[1])]
                    # f2 = F2[..., int(qi[0] + di[0]), int(qi[1] + di[1])]
                    f1 = bilinear_interpolate_torch(F2, qi[0], qi[1]).detach()
                    f2 = bilinear_interpolate_torch(F2, qi[0] + di[0], qi[1] + di[1])
                    loss += FF.l1_loss(f2, f1)

            if mask is not None:
                loss += ((F2 - F0) * (1 - mask)).abs().mean() * lam

            loss.backward()
            optimizer.step()

        # point tracking
        with torch.no_grad():
            sample2, F2 = g_ema.generate(latent, noise)
            for i in range(n):
                pi = handle_points0[i]
                # f = F0[..., int(pi[0]), int(pi[1])]
                f0 = bilinear_interpolate_torch(F0, pi[0], pi[1])
                minv = 1e9
                minx = 1e9
                miny = 1e9
                for qi in neighbor(int(handle_points[i][0]), int(handle_points[i][1]), r2):
                    # f2 = F2[..., int(qi[0]), int(qi[1])]
                    f2 = bilinear_interpolate_torch(F2, qi[0], qi[1])
                    v = torch.norm(f2 - f0, p=1)
                    if v < minv:
                        minv = v
                        minx = int(qi[0])
                        miny = int(qi[1])
                handle_points[i][0] = minx
                handle_points[i][1] = miny

        F = F2.detach().clone()
        if iter % 1 == 0:
            print(iter, loss.item(), handle_points, target_points)
            # p = handle_points[0].int()
            # sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] = sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] * 0
            # t = target_points[0].int()
            # sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] = sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] * 255

            # sample2[0, :, 210, 134] = sample2[0, :, 210, 134] * 0
            # utils.save_image(sample2, "test2.png", normalize=True, range=(-1, 1))

        yield sample2, latent, F2, handle_points