Spaces:
Running
Running
File size: 18,342 Bytes
3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 3f1b7f0 f289b70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
"""
A model worker executes the model.
"""
import argparse
import asyncio
import json
import math
import threading
import time
import uuid
import traceback
from functools import partial
from threading import Thread
import requests
import torch
import torchvision.transforms as T
import uvicorn
from constants import IMAGENET_MEAN, IMAGENET_STD, WORKER_HEART_BEAT_INTERVAL
from fastapi import BackgroundTasks, FastAPI, Request
from fastapi.responses import StreamingResponse
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
from utils import (
build_logger,
pretty_print_semaphore,
server_error_msg,
load_image_from_base64,
)
import spaces
worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0
model_semaphore = None
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD),
]
)
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(
image, min_num=1, max_num=6, image_size=448, use_thumbnail=False
):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
num_layers = {
"InternVL2-8B": 32,
"InternVL2-26B": 48,
"InternVL2-40B": 60,
"InternVL2-Llama3-76B": 80,
"InternVL2-78B": 80,
"InternVL2-Pro": 80,
}[model_name]
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f"language_model.model.layers.{layer_cnt}"] = i
layer_cnt += 1
device_map["vision_model"] = 0
device_map["mlp1"] = 0
device_map["language_model.model.tok_embeddings"] = 0
device_map["language_model.model.embed_tokens"] = 0
device_map["language_model.output"] = 0
device_map["language_model.model.norm"] = 0
device_map["language_model.lm_head"] = 0
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0
return device_map
class ModelWorker:
def __init__(
self,
controller_addr,
worker_addr,
worker_id,
model_path,
model_name,
load_8bit,
device,
context_len=8192,
):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, use_fast=False
)
tokens_to_keep = ["<box>", "</box>", "<ref>", "</ref>"]
tokenizer.additional_special_tokens = [
item
for item in tokenizer.additional_special_tokens
if item not in tokens_to_keep
]
self.tokenizer = tokenizer
if device == "auto":
device_map = split_model(self.model_name)
self.model = AutoModel.from_pretrained(
model_path,
load_in_8bit=load_8bit,
torch_dtype=torch.bfloat16,
device_map=device_map,
trust_remote_code=True,
).eval()
else:
self.model = AutoModel.from_pretrained(
model_path,
load_in_8bit=load_8bit,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).eval()
if not load_8bit and not device == "auto":
self.model = self.model.cuda()
self.load_8bit = load_8bit
self.device = device
self.model_path = model_path
self.image_size = self.model.config.force_image_size
self.context_len = context_len
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,)
)
self.heart_beat_thread.start()
def reload_model(self):
del self.model
torch.cuda.empty_cache()
if self.device == "auto":
device_map = split_model(self.model_name)
self.model = AutoModel.from_pretrained(
self.model_path,
load_in_8bit=self.load_8bit,
torch_dtype=torch.bfloat16,
device_map=device_map,
trust_remote_code=True,
).eval()
else:
self.model = AutoModel.from_pretrained(
self.model_path,
load_in_8bit=self.load_8bit,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).eval()
if not self.load_8bit and not self.device == "auto":
self.model = self.model.cuda()
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status(),
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(
f"Send heart beat. Models: {[self.model_name]}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}"
)
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(
url,
json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length(),
},
timeout=5,
)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return (
args.limit_model_concurrency
- model_semaphore._value
+ (
len(model_semaphore._waiters)
if model_semaphore._waiters is not None
else 0
)
)
def get_status(self):
return {
"model_names": [self.model_name],
"speed": 1,
"queue_length": self.get_queue_length(),
}
@spaces.GPU
@torch.inference_mode()
def generate_stream(self, params):
system_message = params["prompt"][0]["content"]
send_messages = params["prompt"][1:]
max_input_tiles = params["max_input_tiles"]
temperature = params["temperature"]
top_p = params["top_p"]
max_new_tokens = params["max_new_tokens"]
repetition_penalty = params["repetition_penalty"]
do_sample = True if temperature > 0.0 else False
global_image_cnt = 0
history, pil_images, max_input_tile_list = [], [], []
for message in send_messages:
if message["role"] == "user":
prefix = ""
if "image" in message:
max_input_tile_temp = []
for image_str in message["image"]:
pil_images.append(load_image_from_base64(image_str))
prefix += f"Image-{global_image_cnt + 1}: <image>\n\n"
global_image_cnt += 1
max_input_tile_temp.append(
max(1, max_input_tiles // len(message["image"]))
)
if len(max_input_tile_temp) > 0:
max_input_tile_list.append(max_input_tile_temp)
content = prefix + message["content"]
history.append(
[
content,
]
)
else:
history[-1].append(message["content"])
question, history = history[-1][0], history[:-1]
if global_image_cnt == 1:
question = question.replace("Image-1: <image>\n\n", "<image>\n")
history = [
[item[0].replace("Image-1: <image>\n\n", "<image>\n"), item[1]]
for item in history
]
# Create a new list to store processed sublists
flattened_list = []
# Iterate through all but the last sublist in max_input_tile_list and process them
for sublist in max_input_tile_list[:-1]:
processed_sublist = [1] * len(
sublist
) # Change each element in the sublist to 1
flattened_list.extend(
processed_sublist
) # Flatten the processed sublist and add to the new list
# If max_input_tile_list is not empty, add the last sublist to the new list
if max_input_tile_list:
flattened_list.extend(max_input_tile_list[-1])
max_input_tile_list = flattened_list
assert len(max_input_tile_list) == len(
pil_images
), "The number of max_input_tile_list and pil_images should be the same."
old_system_message = self.model.system_message
self.model.system_message = system_message
image_tiles = []
transform = build_transform(input_size=self.image_size)
if len(pil_images) > 0:
for current_max_input_tiles, pil_image in zip(
max_input_tile_list, pil_images
):
if self.model.config.dynamic_image_size:
tiles = dynamic_preprocess(
pil_image,
image_size=self.image_size,
max_num=current_max_input_tiles,
use_thumbnail=self.model.config.use_thumbnail,
)
else:
tiles = [pil_image]
image_tiles += tiles
pixel_values = [transform(item) for item in image_tiles]
pixel_values = torch.stack(pixel_values).to(
self.model.device, dtype=torch.bfloat16
)
logger.info(f"Split images to {pixel_values.shape}")
else:
pixel_values = None
streamer = TextIteratorStreamer(
self.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10
)
generation_config = dict(
num_beams=1,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_length=self.context_len,
top_p=top_p,
streamer=streamer,
)
logger.info(f"Generation config: {generation_config}")
thread = Thread(
target=self.model.chat,
kwargs=dict(
tokenizer=self.tokenizer,
pixel_values=pixel_values,
question=question,
history=history,
return_history=False,
generation_config=generation_config,
),
)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(self.model.conv_template.sep):
generated_text = generated_text[: -len(self.model.conv_template.sep)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
logger.info(
f"max_input_tile_list: {max_input_tile_list}, history: {history}, "
f"question: {question}, answer: {generated_text}"
)
self.model.system_message = old_system_message
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
traceback.print_exc()
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.CudaError as e:
traceback.print_exc()
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except Exception as e:
traceback.print_exc()
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
app = FastAPI()
def release_model_semaphore(fn=None):
model_semaphore.release()
if fn is not None:
fn()
@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
global model_semaphore, global_counter
global_counter += 1
params = await request.json()
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
await model_semaphore.acquire()
worker.send_heart_beat()
generator = worker.generate_stream_gate(params)
background_tasks = BackgroundTasks()
background_tasks.add_task(
partial(release_model_semaphore, fn=worker.send_heart_beat)
)
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_get_status")
async def get_status(request: Request):
return worker.get_status()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-url", type=str, default="http://localhost")
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-name", type=str)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=1)
parser.add_argument("--load-8bit", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
worker = ModelWorker(
args.controller_url,
args.worker_url + f":{args.port}",
worker_id,
args.model_path,
args.model_name,
args.load_8bit,
args.device,
)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|