Spaces:
Running
Running
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2024 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
""" | |
A model worker executes the model. | |
""" | |
import spaces | |
import os | |
import argparse | |
import asyncio | |
import json | |
import math | |
import threading | |
import time | |
import uuid | |
import traceback | |
from functools import partial | |
from threading import Thread | |
import multiprocessing as mp | |
import requests | |
import torch | |
import torchvision.transforms as T | |
import uvicorn | |
from constants import IMAGENET_MEAN, IMAGENET_STD, WORKER_HEART_BEAT_INTERVAL | |
from fastapi import BackgroundTasks, FastAPI, Request | |
from fastapi.responses import StreamingResponse | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer | |
from utils import ( | |
build_logger, | |
pretty_print_semaphore, | |
server_error_msg, | |
load_image_from_base64, | |
) | |
mp.set_start_method("spawn", force=True) | |
worker_id = str(uuid.uuid4())[:6] | |
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
global_counter = 0 | |
model_semaphore = None | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose( | |
[ | |
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD), | |
] | |
) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float("inf") | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess( | |
image, min_num=1, max_num=6, image_size=448, use_thumbnail=False | |
): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size | |
) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def heart_beat_worker(controller): | |
while True: | |
time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
controller.send_heart_beat() | |
def split_model(model_name): | |
device_map = {} | |
world_size = torch.cuda.device_count() | |
num_layers = { | |
"InternVL2-8B": 32, | |
"InternVL2-26B": 48, | |
"InternVL2-40B": 60, | |
"InternVL2-Llama3-76B": 80, | |
"InternVL2-78B": 80, | |
"InternVL2-Pro": 80, | |
}[model_name] | |
# Since the first GPU will be used for ViT, treat it as half a GPU. | |
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | |
num_layers_per_gpu = [num_layers_per_gpu] * world_size | |
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | |
layer_cnt = 0 | |
for i, num_layer in enumerate(num_layers_per_gpu): | |
for j in range(num_layer): | |
device_map[f"language_model.model.layers.{layer_cnt}"] = i | |
layer_cnt += 1 | |
device_map["vision_model"] = 0 | |
device_map["mlp1"] = 0 | |
device_map["language_model.model.tok_embeddings"] = 0 | |
device_map["language_model.model.embed_tokens"] = 0 | |
device_map["language_model.output"] = 0 | |
device_map["language_model.model.norm"] = 0 | |
device_map["language_model.lm_head"] = 0 | |
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0 | |
return device_map | |
class ModelWorker: | |
def __init__( | |
self, | |
controller_addr, | |
worker_addr, | |
worker_id, | |
model_path, | |
model_name, | |
load_8bit, | |
device, | |
context_len=8192, | |
): | |
self.controller_addr = controller_addr | |
self.worker_addr = worker_addr | |
self.worker_id = worker_id | |
if model_path.endswith("/"): | |
model_path = model_path[:-1] | |
if model_name is None: | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith("checkpoint-"): | |
self.model_name = model_paths[-2] + "_" + model_paths[-1] | |
else: | |
self.model_name = model_paths[-1] | |
else: | |
self.model_name = model_name | |
self.import_flash_attn() | |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, trust_remote_code=True, use_fast=False | |
) | |
tokens_to_keep = ["<box>", "</box>", "<ref>", "</ref>"] | |
tokenizer.additional_special_tokens = [ | |
item | |
for item in tokenizer.additional_special_tokens | |
if item not in tokens_to_keep | |
] | |
self.tokenizer = tokenizer | |
if device == "auto": | |
device_map = split_model(self.model_name) | |
self.model = AutoModel.from_pretrained( | |
model_path, | |
load_in_8bit=load_8bit, | |
torch_dtype=torch.bfloat16, | |
device_map=device_map, | |
trust_remote_code=True, | |
).eval() | |
else: | |
self.model = AutoModel.from_pretrained( | |
model_path, | |
load_in_8bit=load_8bit, | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True, | |
).eval() | |
if not load_8bit and not device == "auto": | |
self.model = self.model.cuda() | |
self.load_8bit = load_8bit | |
self.device = device | |
self.model_path = model_path | |
self.image_size = self.model.config.force_image_size | |
self.context_len = context_len | |
self.register_to_controller() | |
self.heart_beat_thread = threading.Thread( | |
target=heart_beat_worker, args=(self,) | |
) | |
self.heart_beat_thread.start() | |
def import_flash_attn(self): | |
try: | |
import flash_attn | |
except ImportError: | |
def install_flash_attn(): | |
os.system( | |
"FLASH_ATTENTION_SKIP_CUDA_BUILD=TRUE pip install flash-attn==2.5.9.post1 --no-build-isolation" | |
) | |
install_flash_attn() | |
# import flash_attn | |
def reload_model(self): | |
del self.model | |
torch.cuda.empty_cache() | |
if self.device == "auto": | |
device_map = split_model(self.model_name) | |
self.model = AutoModel.from_pretrained( | |
self.model_path, | |
load_in_8bit=self.load_8bit, | |
torch_dtype=torch.bfloat16, | |
device_map=device_map, | |
trust_remote_code=True, | |
).eval() | |
else: | |
self.model = AutoModel.from_pretrained( | |
self.model_path, | |
load_in_8bit=self.load_8bit, | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True, | |
).eval() | |
if not self.load_8bit and not self.device == "auto": | |
self.model = self.model.cuda() | |
def register_to_controller(self): | |
logger.info("Register to controller") | |
url = self.controller_addr + "/register_worker" | |
data = { | |
"worker_name": self.worker_addr, | |
"check_heart_beat": True, | |
"worker_status": self.get_status(), | |
} | |
r = requests.post(url, json=data) | |
assert r.status_code == 200 | |
def send_heart_beat(self): | |
logger.info( | |
f"Send heart beat. Models: {[self.model_name]}. " | |
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | |
f"global_counter: {global_counter}" | |
) | |
url = self.controller_addr + "/receive_heart_beat" | |
while True: | |
try: | |
ret = requests.post( | |
url, | |
json={ | |
"worker_name": self.worker_addr, | |
"queue_length": self.get_queue_length(), | |
}, | |
timeout=5, | |
) | |
exist = ret.json()["exist"] | |
break | |
except requests.exceptions.RequestException as e: | |
logger.error(f"heart beat error: {e}") | |
time.sleep(5) | |
if not exist: | |
self.register_to_controller() | |
def get_queue_length(self): | |
if model_semaphore is None: | |
return 0 | |
else: | |
return ( | |
args.limit_model_concurrency | |
- model_semaphore._value | |
+ ( | |
len(model_semaphore._waiters) | |
if model_semaphore._waiters is not None | |
else 0 | |
) | |
) | |
def get_status(self): | |
return { | |
"model_names": [self.model_name], | |
"speed": 1, | |
"queue_length": self.get_queue_length(), | |
} | |
# @torch.inference_mode() | |
def generate_stream(self, params): | |
system_message = params["prompt"][0]["content"] | |
send_messages = params["prompt"][1:] | |
max_input_tiles = params["max_input_tiles"] | |
temperature = params["temperature"] | |
top_p = params["top_p"] | |
max_new_tokens = params["max_new_tokens"] | |
repetition_penalty = params["repetition_penalty"] | |
do_sample = True if temperature > 0.0 else False | |
global_image_cnt = 0 | |
history, pil_images, max_input_tile_list = [], [], [] | |
for message in send_messages: | |
if message["role"] == "user": | |
prefix = "" | |
if "image" in message: | |
max_input_tile_temp = [] | |
for image_str in message["image"]: | |
pil_images.append(load_image_from_base64(image_str)) | |
prefix += f"Image-{global_image_cnt + 1}: <image>\n\n" | |
global_image_cnt += 1 | |
max_input_tile_temp.append( | |
max(1, max_input_tiles // len(message["image"])) | |
) | |
if len(max_input_tile_temp) > 0: | |
max_input_tile_list.append(max_input_tile_temp) | |
content = prefix + message["content"] | |
history.append( | |
[ | |
content, | |
] | |
) | |
else: | |
history[-1].append(message["content"]) | |
question, history = history[-1][0], history[:-1] | |
if global_image_cnt == 1: | |
question = question.replace("Image-1: <image>\n\n", "<image>\n") | |
history = [ | |
[item[0].replace("Image-1: <image>\n\n", "<image>\n"), item[1]] | |
for item in history | |
] | |
# Create a new list to store processed sublists | |
flattened_list = [] | |
# Iterate through all but the last sublist in max_input_tile_list and process them | |
for sublist in max_input_tile_list[:-1]: | |
processed_sublist = [1] * len( | |
sublist | |
) # Change each element in the sublist to 1 | |
flattened_list.extend( | |
processed_sublist | |
) # Flatten the processed sublist and add to the new list | |
# If max_input_tile_list is not empty, add the last sublist to the new list | |
if max_input_tile_list: | |
flattened_list.extend(max_input_tile_list[-1]) | |
max_input_tile_list = flattened_list | |
assert len(max_input_tile_list) == len( | |
pil_images | |
), "The number of max_input_tile_list and pil_images should be the same." | |
old_system_message = self.model.system_message | |
self.model.system_message = system_message | |
image_tiles = [] | |
transform = build_transform(input_size=self.image_size) | |
if len(pil_images) > 0: | |
for current_max_input_tiles, pil_image in zip( | |
max_input_tile_list, pil_images | |
): | |
if self.model.config.dynamic_image_size: | |
tiles = dynamic_preprocess( | |
pil_image, | |
image_size=self.image_size, | |
max_num=current_max_input_tiles, | |
use_thumbnail=self.model.config.use_thumbnail, | |
) | |
else: | |
tiles = [pil_image] | |
image_tiles += tiles | |
pixel_values = [transform(item) for item in image_tiles] | |
pixel_values = torch.stack(pixel_values).to( | |
self.model.device, dtype=torch.bfloat16 | |
) | |
logger.info(f"Split images to {pixel_values.shape}") | |
else: | |
pixel_values = None | |
streamer = TextIteratorStreamer( | |
self.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10 | |
) | |
generation_config = dict( | |
num_beams=1, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
max_length=self.context_len, | |
top_p=top_p, | |
streamer=streamer, | |
) | |
logger.info(f"Generation config: {generation_config}") | |
with torch.no_grad(): | |
thread = Thread( | |
target=self.model.chat, | |
kwargs=dict( | |
tokenizer=self.tokenizer, | |
pixel_values=pixel_values, | |
question=question, | |
history=history, | |
return_history=False, | |
generation_config=generation_config, | |
), | |
) | |
thread.start() | |
generated_text = "" | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(self.model.conv_template.sep): | |
generated_text = generated_text[: -len(self.model.conv_template.sep)] | |
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" | |
logger.info( | |
f"max_input_tile_list: {max_input_tile_list}, history: {history}, " | |
f"question: {question}, answer: {generated_text}" | |
) | |
self.model.system_message = old_system_message | |
def generate_stream_gate(self, params): | |
try: | |
for x in self.generate_stream(params): | |
yield x | |
except ValueError as e: | |
print("Caught ValueError:", e) | |
traceback.print_exc() | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except torch.cuda.CudaError as e: | |
traceback.print_exc() | |
print("Caught torch.cuda.CudaError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except Exception as e: | |
traceback.print_exc() | |
print("Caught Unknown Error", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
app = FastAPI() | |
def release_model_semaphore(fn=None): | |
model_semaphore.release() | |
if fn is not None: | |
fn() | |
async def generate_stream(request: Request): | |
global model_semaphore, global_counter | |
global_counter += 1 | |
params = await request.json() | |
if model_semaphore is None: | |
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
await model_semaphore.acquire() | |
worker.send_heart_beat() | |
generator = worker.generate_stream_gate(params) | |
background_tasks = BackgroundTasks() | |
background_tasks.add_task( | |
partial(release_model_semaphore, fn=worker.send_heart_beat) | |
) | |
return StreamingResponse(generator, background=background_tasks) | |
async def get_status(request: Request): | |
return worker.get_status() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="0.0.0.0") | |
parser.add_argument("--port", type=int, default=21002) | |
parser.add_argument("--worker-url", type=str, default="http://localhost") | |
parser.add_argument("--controller-url", type=str, default="http://localhost:21001") | |
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
parser.add_argument("--model-name", type=str) | |
parser.add_argument("--device", type=str, default="cuda") | |
parser.add_argument("--limit-model-concurrency", type=int, default=5) | |
parser.add_argument("--stream-interval", type=int, default=1) | |
parser.add_argument("--load-8bit", action="store_true") | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
worker = ModelWorker( | |
args.controller_url, | |
args.worker_url + f":{args.port}", | |
worker_id, | |
args.model_path, | |
args.model_name, | |
args.load_8bit, | |
args.device, | |
) | |
uvicorn.run(app, host=args.host, port=args.port, log_level="info") | |