Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,518 Bytes
29a3d5a 459a449 c71518c 29a3d5a 2e6f85e aeed542 459a449 aeed542 2e6f85e 29a3d5a 459a449 29a3d5a 459a449 29a3d5a aeed542 29a3d5a aeed542 29a3d5a aeed542 29a3d5a aeed542 29a3d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
# import spaces
import torch
os.system("nvidia-smi")
print("TORCH_CUDA", torch.cuda.is_available())
# install packages for mamba
def install():
print("Install personal packages", flush=True)
# os.system("pip install causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl")
# os.system("pip install mamba_ssm-1.0.1-cp310-cp310-linux_x86_64.whl")
os.system("bash install.sh")
install()
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from decord import VideoReader
from decord import cpu
from videomamba_image import videomamba_image_tiny
from videomamba_video import videomamba_tiny
from kinetics_class_index import kinetics_classnames
from imagenet_class_index import imagenet_classnames
from transforms import (
GroupNormalize, GroupScale, GroupCenterCrop,
Stack, ToTorchFormatTensor
)
import gradio as gr
from huggingface_hub import hf_hub_download
# Device on which to run the model
# Set to cuda to load on GPU
device = "cuda"
model_video_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_k400_f16_res224.pth")
model_image_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_in1k_res224.pth")
# Pick a pretrained model
model_video = videomamba_tiny(num_classes=400, num_frames=16)
video_sd = torch.load(model_video_path, map_location='cpu')
model_video.load_state_dict(video_sd)
model_image = videomamba_image_tiny()
image_sd = torch.load(model_image_path, map_location='cpu')
model_image.load_state_dict(image_sd['model'])
# Set to eval mode and move to desired device
model_video = model_video.to(device).eval()
model_image = model_image.to(device).eval()
# Create an id to label name mapping
kinetics_id_to_classname = {}
for k, v in kinetics_classnames.items():
kinetics_id_to_classname[k] = v
imagenet_id_to_classname = {}
for k, v in imagenet_classnames.items():
imagenet_id_to_classname[k] = v[1]
def get_index(num_frames, num_segments=8):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(video_path):
vr = VideoReader(video_path, ctx=cpu(0))
num_frames = len(vr)
frame_indices = get_index(num_frames, 16)
# transform
crop_size = 160
scale_size = 160
input_mean = [0.485, 0.456, 0.406]
input_std = [0.229, 0.224, 0.225]
transform = T.Compose([
GroupScale(int(scale_size)),
GroupCenterCrop(crop_size),
Stack(),
ToTorchFormatTensor(),
GroupNormalize(input_mean, input_std)
])
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(img)
torch_imgs = transform(images_group)
return torch_imgs
# @spaces.GPU
def inference_video(video):
vid = load_video(video)
# The model expects inputs of shape: B x C x H x W
TC, H, W = vid.shape
inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
with torch.no_grad():
prediction = model_video(inputs.to(device))
prediction = F.softmax(prediction, dim=1).flatten()
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
def set_example_video(example: list) -> dict:
return gr.Video.update(value=example[0])
# @spaces.GPU
def inference_image(img):
image = img
image_transform = T.Compose(
[
T.Resize(224),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
image = image_transform(image)
# The model expects inputs of shape: B x C x H x W
image = image.unsqueeze(0)
with torch.no_grad():
prediction = model_image(image.to(device))
prediction = F.softmax(prediction, dim=1).flatten()
return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# VideoMamba-Ti
Gradio demo for <a href='https://github.com/OpenGVLab/VideoMamba' target='_blank'>VideoMamba</a>: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below.
"""
)
with gr.Tab("Video"):
# with gr.Box():
with gr.Row():
with gr.Column():
with gr.Row():
input_video = gr.Video(label='Input Video').style(height=360)
with gr.Row():
submit_video_button = gr.Button('Submit')
with gr.Column():
label_video = gr.Label(num_top_classes=5)
with gr.Row():
example_videos = gr.Dataset(components=[input_video], samples=[['./videos/hitting_baseball.mp4'], ['./videos/hoverboarding.mp4'], ['./videos/yoga.mp4']])
with gr.Tab("Image"):
# with gr.Box():
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image', type='pil').style(height=360)
with gr.Row():
submit_image_button = gr.Button('Submit')
with gr.Column():
label_image = gr.Label(num_top_classes=5)
with gr.Row():
example_images = gr.Dataset(components=[input_image], samples=[['./images/cat.png'], ['./images/dog.png'], ['./images/panda.png']])
gr.Markdown(
"""
<p style='text-align: center'><a href='https://arxiv.org/abs/2403.06977' target='_blank'>VideoMamba: State Space Model for Efficient Video Understanding</a> | <a href='https://github.com/OpenGVLab/VideoMamba' target='_blank'>Github Repo</a></p>
"""
)
submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video)
example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos._components)
submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images._components)
demo.launch(enable_queue=True)
# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True) |