patrickvonplaten
commited on
Commit
•
88fd33d
1
Parent(s):
e82dda8
up
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +205 -15
- requirements.txt +1 -1
- verify.py +18 -0
__pycache__/app.cpython-310.pyc
ADDED
Binary file (6.4 kB). View file
|
|
app.py
CHANGED
@@ -1,39 +1,77 @@
|
|
1 |
from datasets import load_dataset
|
2 |
from collections import Counter
|
3 |
-
from random import
|
|
|
|
|
|
|
4 |
import os
|
|
|
|
|
|
|
|
|
5 |
|
6 |
parti_prompt_results = []
|
7 |
ORG = "diffusers-parti-prompts"
|
8 |
SUBMISSIONS = {
|
9 |
-
"
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
# "Kadinsky":
|
14 |
}
|
15 |
-
NUM_QUESTIONS =
|
|
|
|
|
|
|
16 |
|
17 |
submission_names = list(SUBMISSIONS.keys())
|
18 |
num_images = len(SUBMISSIONS[submission_names[0]])
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def start():
|
21 |
ids = {id: 0 for id in range(num_images)}
|
22 |
|
23 |
-
# submissions = load_dataset(os.path.join(ORG, "submissions"))
|
24 |
# submitted_ids = Counter(submissions["ids"])
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
ids = {**ids, **submitted_ids}
|
28 |
|
29 |
# sort by count
|
30 |
-
ids = sorted(ids)
|
|
|
31 |
|
32 |
# get lowest count ids
|
33 |
-
id_candidates = ids[:(
|
34 |
|
35 |
# get random `NUM_QUESTIONS` ids to check
|
36 |
-
image_ids =
|
37 |
images = {}
|
38 |
|
39 |
for i in range(NUM_QUESTIONS):
|
@@ -41,12 +79,164 @@ def start():
|
|
41 |
shuffle(order)
|
42 |
|
43 |
id = image_ids[i]
|
|
|
44 |
images[i] = {
|
45 |
-
"prompt":
|
|
|
46 |
"id": id,
|
47 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
|
50 |
-
return images
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
from collections import Counter
|
3 |
+
from random import sample, shuffle
|
4 |
+
import datasets
|
5 |
+
from pandas import DataFrame
|
6 |
+
from huggingface_hub import list_datasets
|
7 |
import os
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
import secrets
|
11 |
+
|
12 |
|
13 |
parti_prompt_results = []
|
14 |
ORG = "diffusers-parti-prompts"
|
15 |
SUBMISSIONS = {
|
16 |
+
"sd-v1-5": load_dataset(os.path.join(ORG, "sd-v1-5"))["train"],
|
17 |
+
"sd-v2-1": load_dataset(os.path.join(ORG, "sd-v2.1"))["train"],
|
18 |
+
"if-v1-0": load_dataset(os.path.join(ORG, "karlo-v1"))["train"],
|
19 |
+
"karlo": load_dataset(os.path.join(ORG, "if-v-1.0"))["train"],
|
20 |
# "Kadinsky":
|
21 |
}
|
22 |
+
NUM_QUESTIONS = 10
|
23 |
+
MODEL_KEYS = "-".join(SUBMISSIONS.keys())
|
24 |
+
SUBMISSION_ORG = f"results-{MODEL_KEYS}"
|
25 |
+
|
26 |
|
27 |
submission_names = list(SUBMISSIONS.keys())
|
28 |
num_images = len(SUBMISSIONS[submission_names[0]])
|
29 |
|
30 |
+
|
31 |
+
def generate_random_hash(length=8):
|
32 |
+
"""
|
33 |
+
Generates a random hash of specified length.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
length (int): The length of the hash to generate.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
str: A random hash of specified length.
|
40 |
+
"""
|
41 |
+
if length % 2 != 0:
|
42 |
+
raise ValueError("Length should be an even number.")
|
43 |
+
|
44 |
+
num_bytes = length // 2
|
45 |
+
random_bytes = secrets.token_bytes(num_bytes)
|
46 |
+
random_hash = secrets.token_hex(num_bytes)
|
47 |
+
|
48 |
+
return random_hash
|
49 |
+
|
50 |
+
|
51 |
def start():
|
52 |
ids = {id: 0 for id in range(num_images)}
|
53 |
|
|
|
54 |
# submitted_ids = Counter(submissions["ids"])
|
55 |
+
all_datasets = list_datasets(author=SUBMISSION_ORG)
|
56 |
+
relevant_ids = [d.id for d in all_datasets]
|
57 |
+
|
58 |
+
submitted_ids = []
|
59 |
+
for _id in relevant_ids:
|
60 |
+
ds = load_dataset(_id)["train"]
|
61 |
+
submitted_ids += ds["id"]
|
62 |
|
63 |
+
submitted_ids = Counter(submitted_ids)
|
64 |
ids = {**ids, **submitted_ids}
|
65 |
|
66 |
# sort by count
|
67 |
+
ids = sorted(ids.items(), key=lambda x: x[1])
|
68 |
+
ids = [i[0] for i in ids]
|
69 |
|
70 |
# get lowest count ids
|
71 |
+
id_candidates = ids[: (10 * NUM_QUESTIONS)]
|
72 |
|
73 |
# get random `NUM_QUESTIONS` ids to check
|
74 |
+
image_ids = sample(id_candidates, k=NUM_QUESTIONS)
|
75 |
images = {}
|
76 |
|
77 |
for i in range(NUM_QUESTIONS):
|
|
|
79 |
shuffle(order)
|
80 |
|
81 |
id = image_ids[i]
|
82 |
+
row = SUBMISSIONS[submission_names[0]][id]
|
83 |
images[i] = {
|
84 |
+
"prompt": row["Prompt"],
|
85 |
+
"result": "",
|
86 |
"id": id,
|
87 |
+
"Challenge": row["Challenge"],
|
88 |
+
"Category": row["Category"],
|
89 |
+
"Note": row["Note"],
|
90 |
+
}
|
91 |
+
for n, m in enumerate(order):
|
92 |
+
images[i][f"choice_{n}"] = m
|
93 |
+
|
94 |
+
images_frame = DataFrame.from_dict(images, orient="index")
|
95 |
+
return images_frame
|
96 |
+
|
97 |
+
|
98 |
+
def process(dataframe, row_number=0):
|
99 |
+
if row_number == NUM_QUESTIONS:
|
100 |
+
return None, ""
|
101 |
+
|
102 |
+
image_id = dataframe.iloc[row_number]["id"]
|
103 |
+
choices = [
|
104 |
+
submission_names[dataframe.iloc[row_number][f"choice_{i}"]]
|
105 |
+
for i in range(len(SUBMISSIONS))
|
106 |
+
]
|
107 |
+
images = [SUBMISSIONS[c][int(image_id)]["images"] for c in choices]
|
108 |
+
|
109 |
+
prompt = SUBMISSIONS[choices[0]][int(image_id)]["Prompt"]
|
110 |
+
prompt = f"Prompt {row_number + 1}/{NUM_QUESTIONS}: '{prompt}'"
|
111 |
+
|
112 |
+
return images, prompt
|
113 |
+
|
114 |
+
|
115 |
+
def write_result(user_choice, row_number, dataframe, prompt):
|
116 |
+
if row_number == NUM_QUESTIONS:
|
117 |
+
return row_number, dataframe
|
118 |
+
|
119 |
+
user_choice = int(user_choice)
|
120 |
+
chosen_model = submission_names[dataframe.iloc[row_number][f"choice_{user_choice}"]]
|
121 |
+
|
122 |
+
dataframe.loc[row_number, "result"] = chosen_model
|
123 |
+
return row_number + 1, dataframe
|
124 |
+
|
125 |
+
|
126 |
+
def get_index(evt: gr.SelectData) -> int:
|
127 |
+
return evt.index
|
128 |
+
|
129 |
+
|
130 |
+
def change_view(row_number, dataframe):
|
131 |
+
if row_number == NUM_QUESTIONS:
|
132 |
+
|
133 |
+
favorite_model = dataframe["result"].value_counts().idxmax()
|
134 |
+
dataset = datasets.Dataset.from_pandas(dataframe)
|
135 |
+
dataset = dataset.remove_columns(set(dataset.column_names) - set(["id", "result"]))
|
136 |
+
hash = generate_random_hash()
|
137 |
+
repo_id = os.path.join(SUBMISSION_ORG, hash)
|
138 |
+
|
139 |
+
dataset.push_to_hub(repo_id, token=os.getenv("HF_TOKEN"))
|
140 |
+
return {
|
141 |
+
result: f"You are of type: {favorite_model}!",
|
142 |
+
result_view: gr.update(visible=True),
|
143 |
+
gallery_view: gr.update(visible=False),
|
144 |
+
}
|
145 |
+
else:
|
146 |
+
return {
|
147 |
+
result: "",
|
148 |
+
result_view: gr.update(visible=False),
|
149 |
+
gallery_view: gr.update(visible=True),
|
150 |
}
|
151 |
|
|
|
152 |
|
153 |
+
if True:
|
154 |
+
TITLE = "Open-Source Parti Prompts"
|
155 |
+
DESCRIPTION = "An interactive 'Which Generative AI' game to evaluate open-source generative AI models"
|
156 |
+
GALLERY_COLUMN_NUM = len(SUBMISSIONS)
|
157 |
+
|
158 |
+
with gr.Blocks(css="style.css") as demo:
|
159 |
+
gr.Markdown(TITLE)
|
160 |
+
gr.Markdown(DESCRIPTION)
|
161 |
+
start_button = gr.Button("Start").style(full_width=False)
|
162 |
+
|
163 |
+
headers = ["prompt", "result", "id", "Challenge", "Category", "Note"] + [
|
164 |
+
f"choice_{i}" for i in range(len(SUBMISSIONS))
|
165 |
+
]
|
166 |
+
datatype = ["str", "str", "number", "str", "str", "str"] + len(SUBMISSIONS) * [
|
167 |
+
"number"
|
168 |
+
]
|
169 |
+
|
170 |
+
with gr.Column(visible=False):
|
171 |
+
row_number = gr.Number(
|
172 |
+
label="Current row selection index",
|
173 |
+
value=0,
|
174 |
+
precision=0,
|
175 |
+
interactive=False,
|
176 |
+
)
|
177 |
+
|
178 |
+
# Create Data Frame
|
179 |
+
with gr.Column(visible=False) as result_view:
|
180 |
+
result = gr.Markdown("")
|
181 |
+
dataframe = gr.Dataframe(
|
182 |
+
headers=headers,
|
183 |
+
datatype=datatype,
|
184 |
+
row_count=NUM_QUESTIONS,
|
185 |
+
col_count=(6 + len(SUBMISSIONS), "fixed"),
|
186 |
+
interactive=False,
|
187 |
+
)
|
188 |
+
gr.Markdown("Click on start to play again!")
|
189 |
+
|
190 |
+
with gr.Column(visible=True) as gallery_view:
|
191 |
+
gr.Markdown("Pick your the photo that best corresponds to the prompt.")
|
192 |
+
prompt = gr.Markdown(f"Prompt 1/{NUM_QUESTIONS}: ")
|
193 |
+
gallery = gr.Gallery(
|
194 |
+
label="All images", show_label=False, elem_id="gallery"
|
195 |
+
).style(columns=GALLERY_COLUMN_NUM, object_fit="contain")
|
196 |
+
|
197 |
+
next_button = gr.Button("Select").style(full_width=False)
|
198 |
+
|
199 |
+
with gr.Column(visible=False):
|
200 |
+
selected_image = gr.Number(label="Selected index", value=-1, precision=0)
|
201 |
+
|
202 |
+
start_button.click(
|
203 |
+
fn=start,
|
204 |
+
inputs=[],
|
205 |
+
outputs=dataframe
|
206 |
+
).then(
|
207 |
+
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
208 |
+
inputs=[row_number],
|
209 |
+
outputs=[row_number],
|
210 |
+
).then(
|
211 |
+
fn=change_view,
|
212 |
+
inputs=[row_number, dataframe],
|
213 |
+
outputs=[result_view, gallery_view, result]
|
214 |
+
).then(
|
215 |
+
fn=process, inputs=[dataframe], outputs=[gallery, prompt]
|
216 |
+
)
|
217 |
+
|
218 |
+
gallery.select(
|
219 |
+
fn=get_index,
|
220 |
+
outputs=selected_image,
|
221 |
+
queue=False,
|
222 |
+
)
|
223 |
+
|
224 |
+
next_button.click(
|
225 |
+
fn=write_result,
|
226 |
+
inputs=[selected_image, row_number, dataframe, prompt],
|
227 |
+
outputs=[row_number, dataframe],
|
228 |
+
).then(
|
229 |
+
fn=process,
|
230 |
+
inputs=[dataframe, row_number],
|
231 |
+
outputs=[gallery, prompt]
|
232 |
+
).then(
|
233 |
+
fn=change_view,
|
234 |
+
inputs=[row_number, dataframe],
|
235 |
+
outputs=[result_view, gallery_view, result]
|
236 |
+
).then(
|
237 |
+
fn=lambda x: 0 if x == NUM_QUESTIONS else x,
|
238 |
+
inputs=[row_number],
|
239 |
+
outputs=[row_number],
|
240 |
+
)
|
241 |
+
|
242 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
requests
|
2 |
datasets
|
|
|
|
|
|
1 |
datasets
|
2 |
+
pandas
|
verify.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset
|
3 |
+
from collections import Counter
|
4 |
+
from random import choices, shuffle
|
5 |
+
from pandas import DataFrame
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
parti_prompt_results = []
|
10 |
+
ORG = "diffusers-parti-prompts"
|
11 |
+
SUBMISSIONS = {
|
12 |
+
"sd_v1_5": load_dataset(os.path.join(ORG, "sd-v1-5"))["train"],
|
13 |
+
"sd_v2_1": load_dataset(os.path.join(ORG, "sd-v2.1"))["train"],
|
14 |
+
"if_v1_0": load_dataset(os.path.join(ORG, "karlo-v1"))["train"],
|
15 |
+
"karlo": load_dataset(os.path.join(ORG, "if-v-1.0"))["train"],
|
16 |
+
# "Kadinsky":
|
17 |
+
}
|
18 |
+
import ipdb; ipdb.set_trace()
|