Spaces:
Running
on
T4
Running
on
T4
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import torch | |
import numpy as np | |
from torch.nn import functional as F | |
def axis_angle_to_quaternion(axis_angle): | |
""" | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = 0.5 * angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles]) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], | |
dim=-1) | |
return quaternions | |
def quaternion_to_matrix(quaternions): | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def axis_angle_to_matrix(axis_angle): | |
""" | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def matrix_of_angles(cos, sin, inv=False, dim=2): | |
assert dim in [2, 3] | |
sin = -sin if inv else sin | |
if dim == 2: | |
row1 = torch.stack((cos, -sin), axis=-1) | |
row2 = torch.stack((sin, cos), axis=-1) | |
return torch.stack((row1, row2), axis=-2) | |
elif dim == 3: | |
row1 = torch.stack((cos, -sin, 0 * cos), axis=-1) | |
row2 = torch.stack((sin, cos, 0 * cos), axis=-1) | |
row3 = torch.stack((0 * sin, 0 * cos, 1 + 0 * cos), axis=-1) | |
return torch.stack((row1, row2, row3), axis=-2) | |
def matrot2axisangle(matrots): | |
# This function is borrowed from https://github.com/davrempe/humor/utils/transforms.py | |
# axisang N x 3 | |
''' | |
:param matrots: N*num_joints*9 | |
:return: N*num_joints*3 | |
''' | |
import cv2 | |
batch_size = matrots.shape[0] | |
matrots = matrots.reshape([batch_size, -1, 9]) | |
out_axisangle = [] | |
for mIdx in range(matrots.shape[0]): | |
cur_axisangle = [] | |
for jIdx in range(matrots.shape[1]): | |
a = cv2.Rodrigues(matrots[mIdx, | |
jIdx:jIdx + 1, :].reshape(3, | |
3))[0].reshape( | |
(1, 3)) | |
cur_axisangle.append(a) | |
out_axisangle.append(np.array(cur_axisangle).reshape([1, -1, 3])) | |
return np.vstack(out_axisangle) | |
def axisangle2matrots(axisangle): | |
# This function is borrowed from https://github.com/davrempe/humor/utils/transforms.py | |
# axisang N x 3 | |
''' | |
:param axisangle: N*num_joints*3 | |
:return: N*num_joints*9 | |
''' | |
import cv2 | |
batch_size = axisangle.shape[0] | |
axisangle = axisangle.reshape([batch_size, -1, 3]) | |
out_matrot = [] | |
for mIdx in range(axisangle.shape[0]): | |
cur_axisangle = [] | |
for jIdx in range(axisangle.shape[1]): | |
a = cv2.Rodrigues(axisangle[mIdx, jIdx:jIdx + 1, :].reshape(1, | |
3))[0] | |
cur_axisangle.append(a) | |
out_matrot.append(np.array(cur_axisangle).reshape([1, -1, 9])) | |
return np.vstack(out_matrot) | |
def batch_rodrigues(axisang): | |
# This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37 | |
# axisang N x 3 | |
axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(axisang_norm, -1) | |
axisang_normalized = torch.div(axisang, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) | |
rot_mat = quat2mat(quat) | |
rot_mat = rot_mat.view(rot_mat.shape[0], 9) | |
return rot_mat | |
def quat2mat(quat): | |
""" | |
This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 | |
Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [batch_size, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, | |
2], norm_quat[:, | |
3] | |
batch_size = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack([ | |
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, | |
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, | |
w2 - x2 - y2 + z2 | |
], | |
dim=1).view(batch_size, 3, 3) | |
return rotMat | |
def rotation_matrix_to_angle_axis(rotation_matrix): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to Rodrigues vector | |
Args: | |
rotation_matrix (Tensor): rotation matrix. | |
Returns: | |
Tensor: Rodrigues vector transformation. | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 3)` | |
Example: | |
>>> input = torch.rand(2, 3, 4) # Nx4x4 | |
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 | |
""" | |
if rotation_matrix.shape[1:] == (3, 3): | |
rot_mat = rotation_matrix.reshape(-1, 3, 3) | |
hom = torch.tensor([0, 0, 1], | |
dtype=torch.float32, | |
device=rotation_matrix.device).reshape( | |
1, 3, 1).expand(rot_mat.shape[0], -1, -1) | |
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) | |
quaternion = rotation_matrix_to_quaternion(rotation_matrix) | |
aa = quaternion_to_angle_axis(quaternion) | |
aa[torch.isnan(aa)] = 0.0 | |
return aa | |
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert quaternion vector to angle axis of rotation. | |
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h | |
Args: | |
quaternion (torch.Tensor): tensor with quaternions. | |
Return: | |
torch.Tensor: tensor with angle axis of rotation. | |
Shape: | |
- Input: :math:`(*, 4)` where `*` means, any number of dimensions | |
- Output: :math:`(*, 3)` | |
Example: | |
>>> quaternion = torch.rand(2, 4) # Nx4 | |
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 | |
""" | |
if not torch.is_tensor(quaternion): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(quaternion))) | |
if not quaternion.shape[-1] == 4: | |
raise ValueError( | |
"Input must be a tensor of shape Nx4 or 4. Got {}".format( | |
quaternion.shape)) | |
# unpack input and compute conversion | |
q1: torch.Tensor = quaternion[..., 1] | |
q2: torch.Tensor = quaternion[..., 2] | |
q3: torch.Tensor = quaternion[..., 3] | |
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 | |
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) | |
cos_theta: torch.Tensor = quaternion[..., 0] | |
two_theta: torch.Tensor = 2.0 * torch.where( | |
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), | |
torch.atan2(sin_theta, cos_theta)) | |
k_pos: torch.Tensor = two_theta / sin_theta | |
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) | |
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) | |
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] | |
angle_axis[..., 0] += q1 * k | |
angle_axis[..., 1] += q2 * k | |
angle_axis[..., 2] += q3 * k | |
return angle_axis | |
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): | |
""" | |
This function is borrowed from https://github.com/kornia/kornia | |
Convert 3x4 rotation matrix to 4d quaternion vector | |
This algorithm is based on algorithm described in | |
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 | |
Args: | |
rotation_matrix (Tensor): the rotation matrix to convert. | |
Return: | |
Tensor: the rotation in quaternion | |
Shape: | |
- Input: :math:`(N, 3, 4)` | |
- Output: :math:`(N, 4)` | |
Example: | |
>>> input = torch.rand(4, 3, 4) # Nx3x4 | |
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 | |
""" | |
if not torch.is_tensor(rotation_matrix): | |
raise TypeError("Input type is not a torch.Tensor. Got {}".format( | |
type(rotation_matrix))) | |
if len(rotation_matrix.shape) > 3: | |
raise ValueError( | |
"Input size must be a three dimensional tensor. Got {}".format( | |
rotation_matrix.shape)) | |
if not rotation_matrix.shape[-2:] == (3, 4): | |
raise ValueError( | |
"Input size must be a N x 3 x 4 tensor. Got {}".format( | |
rotation_matrix.shape)) | |
rmat_t = torch.transpose(rotation_matrix, 1, 2) | |
mask_d2 = rmat_t[:, 2, 2] < eps | |
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] | |
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] | |
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q0 = torch.stack([ | |
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, | |
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] | |
], -1) | |
t0_rep = t0.repeat(4, 1).t() | |
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] | |
q1 = torch.stack([ | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], | |
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] | |
], -1) | |
t1_rep = t1.repeat(4, 1).t() | |
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q2 = torch.stack([ | |
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], | |
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 | |
], -1) | |
t2_rep = t2.repeat(4, 1).t() | |
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] | |
q3 = torch.stack([ | |
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], | |
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] | |
], -1) | |
t3_rep = t3.repeat(4, 1).t() | |
mask_c0 = mask_d2 * mask_d0_d1 | |
mask_c1 = mask_d2 * ~mask_d0_d1 | |
mask_c2 = ~mask_d2 * mask_d0_nd1 | |
mask_c3 = ~mask_d2 * ~mask_d0_nd1 | |
mask_c0 = mask_c0.view(-1, 1).type_as(q0) | |
mask_c1 = mask_c1.view(-1, 1).type_as(q1) | |
mask_c2 = mask_c2.view(-1, 1).type_as(q2) | |
mask_c3 = mask_c3.view(-1, 1).type_as(q3) | |
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 | |
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa | |
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa | |
q *= 0.5 | |
return q | |
def estimate_translation_np(S, | |
joints_2d, | |
joints_conf, | |
focal_length=5000., | |
img_size=224.): | |
""" | |
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py | |
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
Input: | |
S: (25, 3) 3D joint locations | |
joints: (25, 3) 2D joint locations and confidence | |
Returns: | |
(3,) camera translation vector | |
""" | |
num_joints = S.shape[0] | |
# focal length | |
f = np.array([focal_length, focal_length]) | |
# optical center | |
center = np.array([img_size / 2., img_size / 2.]) | |
# transformations | |
Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) | |
XY = np.reshape(S[:, 0:2], -1) | |
O = np.tile(center, num_joints) | |
F = np.tile(f, num_joints) | |
weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) | |
# least squares | |
Q = np.array([ | |
F * np.tile(np.array([1, 0]), num_joints), | |
F * np.tile(np.array([0, 1]), num_joints), | |
O - np.reshape(joints_2d, -1) | |
]).T | |
c = (np.reshape(joints_2d, -1) - O) * Z - F * XY | |
# weighted least squares | |
W = np.diagflat(weight2) | |
Q = np.dot(W, Q) | |
c = np.dot(W, c) | |
# square matrix | |
A = np.dot(Q.T, Q) | |
b = np.dot(Q.T, c) | |
# solution | |
trans = np.linalg.solve(A, b) | |
return trans | |
def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): | |
""" | |
This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py | |
Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. | |
Input: | |
S: (B, 49, 3) 3D joint locations | |
joints: (B, 49, 3) 2D joint locations and confidence | |
Returns: | |
(B, 3) camera translation vectors | |
""" | |
device = S.device | |
# Use only joints 25:49 (GT joints) | |
S = S[:, 25:, :].cpu().numpy() | |
joints_2d = joints_2d[:, 25:, :].cpu().numpy() | |
joints_conf = joints_2d[:, :, -1] | |
joints_2d = joints_2d[:, :, :-1] | |
trans = np.zeros((S.shape[0], 3), dtype=np.float6432) | |
# Find the translation for each example in the batch | |
for i in range(S.shape[0]): | |
S_i = S[i] | |
joints_i = joints_2d[i] | |
conf_i = joints_conf[i] | |
trans[i] = estimate_translation_np(S_i, | |
joints_i, | |
conf_i, | |
focal_length=focal_length, | |
img_size=img_size) | |
return torch.from_numpy(trans).to(device) | |
def rot6d_to_rotmat_spin(x): | |
"""Convert 6D rotation representation to 3x3 rotation matrix. | |
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 | |
Input: | |
(B,6) Batch of 6-D rotation representations | |
Output: | |
(B,3,3) Batch of corresponding rotation matrices | |
""" | |
x = x.view(-1, 3, 2) | |
a1 = x[:, :, 0] | |
a2 = x[:, :, 1] | |
b1 = F.normalize(a1) | |
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) | |
# inp = a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1 | |
# denom = inp.pow(2).sum(dim=1).sqrt().unsqueeze(-1) + 1e-8 | |
# b2 = inp / denom | |
b3 = torch.cross(b1, b2) | |
return torch.stack((b1, b2, b3), dim=-1) | |
def rot6d_to_rotmat(x): | |
x = x.view(-1, 3, 2) | |
# Normalize the first vector | |
b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6) | |
dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True) | |
# Compute the second vector by finding the orthogonal complement to it | |
b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6) | |
# Finish building the basis by taking the cross product | |
b3 = torch.cross(b1, b2, dim=1) | |
rot_mats = torch.stack([b1, b2, b3], dim=-1) | |
return rot_mats | |
import mGPT.utils.rotation_conversions as rotation_conversions | |
def rot6d(x_rotations, pose_rep): | |
time, njoints, feats = x_rotations.shape | |
# Compute rotations (convert only masked sequences output) | |
if pose_rep == "rotvec": | |
rotations = rotation_conversions.axis_angle_to_matrix(x_rotations) | |
elif pose_rep == "rotmat": | |
rotations = x_rotations.view(njoints, 3, 3) | |
elif pose_rep == "rotquat": | |
rotations = rotation_conversions.quaternion_to_matrix(x_rotations) | |
elif pose_rep == "rot6d": | |
rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations) | |
else: | |
raise NotImplementedError("No geometry for this one.") | |
rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations) | |
return rotations_6d | |
def rot6d_batch(x_rotations, pose_rep): | |
nsamples, time, njoints, feats = x_rotations.shape | |
# Compute rotations (convert only masked sequences output) | |
if pose_rep == "rotvec": | |
rotations = rotation_conversions.axis_angle_to_matrix(x_rotations) | |
elif pose_rep == "rotmat": | |
rotations = x_rotations.view(-1, njoints, 3, 3) | |
elif pose_rep == "rotquat": | |
rotations = rotation_conversions.quaternion_to_matrix(x_rotations) | |
elif pose_rep == "rot6d": | |
rotations = rotation_conversions.rotation_6d_to_matrix(x_rotations) | |
else: | |
raise NotImplementedError("No geometry for this one.") | |
rotations_6d = rotation_conversions.matrix_to_rotation_6d(rotations) | |
return rotations_6d | |
def rot6d_to_rotvec_batch(pose): | |
# nsamples, time, njoints, feats = rot6d.shape | |
bs, nfeats = pose.shape | |
rot6d = pose.reshape(bs, 24, 6) | |
rotations = rotation_conversions.rotation_6d_to_matrix(rot6d) | |
rotvec = rotation_conversions.matrix_to_axis_angle(rotations) | |
return rotvec.reshape(bs, 24 * 3) | |