SEED_VALUE: 1234 # Seed value DEBUG: True # Debug mode FULL_CONFIG: false TRAIN: SPLIT: 'train' # Training split name NUM_WORKERS: 8 # Number of workers BATCH_SIZE: 8 # Size of batches END_EPOCH: 2000 # End epoch RESUME: '' # Experiment path to be resumed training PRETRAINED_VAE: '' # Pretrained vae/vqvae model path PRETRAINED: '' # Pretrained model path OPTIM: target: AdamW params: lr: 2e-4 betas: [0.9, 0.99] weight_decay: 0.0 LR_SCHEDULER: target: CosineAnnealingLR params: T_max: ${eval:${LOGGER.VAL_EVERY_STEPS} * 100} eta_min: 1e-6 EVAL: SPLIT: 'val' # Validation split name BATCH_SIZE: 16 # Validation Batch size NUM_WORKERS: 8 # Validation Batch size TEST: CHECKPOINTS: '' # Pretrained model path SPLIT: 'test' # Testing split name BATCH_SIZE: 16 # Testing Batch size NUM_WORKERS: 8 # Testing Batch size SAVE_PREDICTIONS: False # Weather to save predictions COUNT_TIME: False # Weather to count time during test REPLICATION_TIMES: 20 # Number of times to replicate the test REP_I: 0 # For counting replication times model: target: mGPT.models.mgpt.MotionGPT params: condition: 'text' task: 't2m' lm: ${lm.default} motion_vae: ${vq.default} # Related parameters stage: ${TRAIN.STAGE} debug: ${DEBUG} codebook_size: ${model.params.motion_vae.params.code_num} metrics_dict: ${METRIC.TYPE} LOSS: LAMBDA_REC: 1.0 # Lambda for reconstruction losses LAMBDA_JOINT: 1.0 # Lambda for joint losses LAMBDA_LATENT: 1e-5 # Lambda for latent losses LAMBDA_KL: 1e-5 # Lambda for kl losses LAMBDA_GEN: 1.0 # Lambda for text-motion generation losses LAMBDA_CROSS: 1.0 # Lambda for cross-reconstruction losses LAMBDA_CYCLE: 1.0 # Lambda for cycle losses LAMBDA_PRIOR: 0.0 # Lambda for diffusion prior losses LAMBDA_VELOCITY: 0.5 # Lambda for velocity losses LAMBDA_COMMIT: 0.02 # Lambda for commitment losses ABLATION: RECONS_LOSS: 'l1_smooth' METRIC: TASK: 't2m' FORCE_IN_METER: True DIST_SYNC_ON_STEP: True MM_NUM_SAMPLES: 100 # Number of samples for multimodal test MM_NUM_REPEATS: 30 # Number of repeats for multimodal test MM_NUM_TIMES: 10 # Number of times to repeat the multimodal test DIVERSITY_TIMES: 300 # Number of times to repeat the diversity test TM2T: ${evaluator.tm2t} DATASET: target: mGPT.data.HumanML3D.HumanML3DDataModule CODE_PATH: 'VQVAE' TASK_ROOT: '' TASK_PATH: '' NFEATS: 263 KIT: MAX_MOTION_LEN: 196 MIN_MOTION_LEN: 24 MAX_TEXT_LEN: 20 PICK_ONE_TEXT: true FRAME_RATE: 12.5 UNIT_LEN: 4 HUMANML3D: MAX_MOTION_LEN: 196 MIN_MOTION_LEN: 40 MAX_TEXT_LEN: 20 PICK_ONE_TEXT: true FRAME_RATE: 20.0 UNIT_LEN: 4 STD_TEXT: False ABLATION: # For MotionGPT use_length: False predict_ratio: 0.2 inbetween_ratio: 0.25 image_size: 256 # For Motion-latent-diffusion VAE_TYPE: 'actor' # vae ablation: actor or mcross VAE_ARCH: 'encoder_decoder' # mdiffusion vae architecture PE_TYPE: 'actor' # mdiffusion mld or actor DIFF_PE_TYPE: 'actor' # mdiffusion mld or actor SKIP_CONNECT: False # skip connection for denoiser va MLP_DIST: False # use linear to expand mean and std rather expand token nums IS_DIST: False # Mcross distribution kl PREDICT_EPSILON: True # noise or motion LOGGER: VAL_EVERY_STEPS: 10 LOGGERS: ['tensorboard', 'wandb'] TENSORBOARD: target: pytorch_lightning.loggers.TensorBoardLogger params: save_dir: ${FOLDER_EXP} name: 'tensorboard' version: '' WANDB: target: pytorch_lightning.loggers.WandbLogger params: project: null offline: False id: null version: '' name: ${NAME} save_dir: ${FOLDER_EXP}