Spaces:
Running
on
T4
Running
on
T4
from torch import nn | |
import numpy as np | |
import torch | |
from typing import Tuple, List, Union, Optional | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from huggingface_hub import hf_hub_download | |
N = type(None) | |
V = np.array | |
ARRAY = np.ndarray | |
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] | |
VS = Union[Tuple[V, ...], List[V]] | |
VN = Union[V, N] | |
VNS = Union[VS, N] | |
T = torch.Tensor | |
TS = Union[Tuple[T, ...], List[T]] | |
TN = Optional[T] | |
TNS = Union[Tuple[TN, ...], List[TN]] | |
TSN = Optional[TS] | |
TA = Union[T, ARRAY] | |
D = torch.device | |
class MLP(nn.Module): | |
def forward(self, x: T) -> T: | |
return self.model(x) | |
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): | |
super(MLP, self).__init__() | |
layers = [] | |
for i in range(len(sizes) -1): | |
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) | |
if i < len(sizes) - 2: | |
layers.append(act()) | |
self.model = nn.Sequential(*layers) | |
class ClipCaptionModel(nn.Module): | |
#@functools.lru_cache #FIXME | |
def get_dummy_token(self, batch_size: int, device: D) -> T: | |
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) | |
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): | |
embedding_text = self.gpt.transformer.wte(tokens) | |
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) | |
#print(embedding_text.size()) #torch.Size([5, 67, 768]) | |
#print(prefix_projections.size()) #torch.Size([5, 1, 768]) | |
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) | |
if labels is not None: | |
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) | |
labels = torch.cat((dummy_token, tokens), dim=1) | |
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) | |
return out | |
def __init__(self, prefix_length: int, prefix_size: int = 512): | |
super(ClipCaptionModel, self).__init__() | |
self.prefix_length = prefix_length | |
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') | |
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] | |
if prefix_length > 10: # not enough memory | |
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) | |
else: | |
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) | |
class ClipCaptionPrefix(ClipCaptionModel): | |
def parameters(self, recurse: bool = True): | |
return self.clip_project.parameters() | |
def train(self, mode: bool = True): | |
super(ClipCaptionPrefix, self).train(mode) | |
self.gpt.eval() | |
return self | |
def generate2( | |
model, | |
tokenizer, | |
tokens=None, | |
prompt=None, | |
embed=None, | |
entry_count=1, | |
entry_length=67, # maximum number of words | |
top_p=0.8, | |
temperature=1., | |
stop_token: str = '.', | |
): | |
model.eval() | |
generated_num = 0 | |
generated_list = [] | |
stop_token_index = tokenizer.encode(stop_token)[0] | |
filter_value = -float("Inf") | |
device = next(model.parameters()).device | |
score_col = [] | |
with torch.no_grad(): | |
for entry_idx in range(entry_count): | |
if embed is not None: | |
generated = embed | |
else: | |
if tokens is None: | |
tokens = torch.tensor(tokenizer.encode(prompt)) | |
tokens = tokens.unsqueeze(0).to(device) | |
generated = model.gpt.transformer.wte(tokens) | |
for i in range(entry_length): | |
outputs = model.gpt(inputs_embeds=generated) | |
logits = outputs.logits | |
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ | |
..., :-1 | |
].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[:, indices_to_remove] = filter_value | |
next_token = torch.argmax(torch.softmax(logits, dim=-1), -1).reshape(1, 1) | |
score = torch.softmax(logits, dim=-1).reshape(-1)[next_token.item()].item() | |
score_col.append(score) | |
next_token_embed = model.gpt.transformer.wte(next_token) | |
if tokens is None: | |
tokens = next_token | |
else: | |
tokens = torch.cat((tokens, next_token), dim=1) | |
generated = torch.cat((generated, next_token_embed), dim=1) | |
if stop_token_index == next_token.item(): | |
break | |
output_list = list(tokens.squeeze(0).cpu().numpy()) | |
output_text = tokenizer.decode(output_list) | |
generated_list.append(output_text) | |
return generated_list[0] | |
def pc_caption(pc_encoder: torch.nn.Module, pc, cond_scale): | |
ref_dev = next(pc_encoder.parameters()).device | |
prefix = pc_encoder(torch.tensor(pc.T[None], device=ref_dev)) | |
prefix = prefix.float() * cond_scale | |
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) | |
text, _ = generate2(model, tokenizer, embed=prefix_embed) | |
return text | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | |
prefix_length = 10 | |
model = ClipCaptionModel(prefix_length) | |
# print(model.gpt_embedding_size) | |
model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt', token=True), map_location='cpu')) | |
model.eval() | |
if torch.cuda.is_available(): | |
model = model.cuda() | |