openshape-demo / app.py
eliphatfs
Retrieval filters.
b9f9a14
raw
history blame
13.3 kB
import sys
import threading
import streamlit as st
from huggingface_hub import HfFolder, snapshot_download
@st.cache_data
def load_support():
if st.secrets.has_key('etoken'):
HfFolder().save_token(st.secrets['etoken'])
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
# st.set_page_config(layout='wide')
load_support()
import numpy
import torch
import openshape
import transformers
from PIL import Image
@st.cache_resource
def load_openshape(name, to_cpu=False):
pce = openshape.load_pc_encoder(name)
if to_cpu:
pce = pce.cpu()
return pce
@st.cache_resource
def load_openclip():
sys.clip_move_lock = threading.Lock()
clip_model, clip_prep = transformers.CLIPModel.from_pretrained(
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
low_cpu_mem_usage=True, torch_dtype=half,
offload_state_dict=True
), transformers.CLIPProcessor.from_pretrained("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k")
if torch.cuda.is_available():
with sys.clip_move_lock:
clip_model.cuda()
return clip_model, clip_prep
f32 = numpy.float32
half = torch.float16 if torch.cuda.is_available() else torch.bfloat16
# clip_model, clip_prep = None, None
clip_model, clip_prep = load_openclip()
model_b32 = load_openshape('openshape-pointbert-vitb32-rgb', True)
model_l14 = load_openshape('openshape-pointbert-vitl14-rgb')
model_g14 = load_openshape('openshape-pointbert-vitg14-rgb')
torch.set_grad_enabled(False)
for kc, vc in st.session_state.get('state_queue', []):
st.session_state[kc] = vc
st.session_state.state_queue = []
import samples_index
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
st.title("OpenShape Demo")
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
prog = st.progress(0.0, "Idle")
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
"Classification",
"Retrieval w/ Image",
"Retrieval w/ Text",
"Retrieval w/ 3D",
"Image Generation",
"Captioning",
])
def sq(kc, vc):
st.session_state.state_queue.append((kc, vc))
def reset_3d_shape_input(key):
# this is not working due to streamlit problems, don't use it
model_key = key + "_model"
npy_key = key + "_npy"
swap_key = key + "_swap"
sq(model_key, None)
sq(npy_key, None)
sq(swap_key, "Y is up (for most Objaverse shapes)")
def auto_submit(key):
if st.session_state.get(key):
st.session_state[key] = False
return True
return False
def queue_auto_submit(key):
st.session_state[key] = True
st.experimental_rerun()
img_example_counter = 0
def image_examples(samples, ncols, return_key=None, example_text="Examples"):
global img_example_counter
trigger = False
with st.expander(example_text, True):
for i in range(len(samples) // ncols):
cols = st.columns(ncols)
for j in range(ncols):
idx = i * ncols + j
if idx >= len(samples):
continue
entry = samples[idx]
with cols[j]:
st.image(entry['dispi'])
img_example_counter += 1
with st.columns(5)[2]:
this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
trigger = trigger or this_trigger
if this_trigger:
if return_key is None:
for k, v in entry.items():
if not k.startswith('disp'):
sq(k, v)
else:
trigger = entry[return_key]
return trigger
def demo_classification():
with st.form("clsform"):
load_data = misc_utils.input_3d_shape('cls')
cats = st.text_input("Custom Categories (64 max, separated with comma)")
cats = [a.strip() for a in cats.split(',')]
if len(cats) > 64:
st.error('Maximum 64 custom categories supported in the demo')
return
lvis_run = st.form_submit_button("Run Classification on LVIS Categories")
custom_run = st.form_submit_button("Run Classification on Custom Categories")
if lvis_run or auto_submit("clsauto"):
pc = load_data(prog)
col2 = misc_utils.render_pc(pc)
prog.progress(0.5, "Running Classification")
pred = classification.pred_lvis_sims(model_g14, pc)
with col2:
for i, (cat, sim) in zip(range(5), pred.items()):
st.text(cat)
st.caption("Similarity %.4f" % sim)
prog.progress(1.0, "Idle")
if custom_run:
pc = load_data(prog)
col2 = misc_utils.render_pc(pc)
prog.progress(0.5, "Computing Category Embeddings")
device = clip_model.device
tn = clip_prep(text=cats, return_tensors='pt', truncation=True, max_length=76, padding=True).to(device)
feats = clip_model.get_text_features(**tn).float().cpu()
prog.progress(0.5, "Running Classification")
pred = classification.pred_custom_sims(model_g14, pc, cats, feats)
with col2:
for i, (cat, sim) in zip(range(5), pred.items()):
st.text(cat)
st.caption("Similarity %.4f" % sim)
prog.progress(1.0, "Idle")
if image_examples(samples_index.classification, 3, example_text="Examples (Choose one of the following 3D shapes)"):
queue_auto_submit("clsauto")
def demo_captioning():
with st.form("capform"):
load_data = misc_utils.input_3d_shape('cap')
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0, 0.1, key='capcondscl')
if st.form_submit_button("Generate a Caption") or auto_submit("capauto"):
pc = load_data(prog)
col2 = misc_utils.render_pc(pc)
prog.progress(0.5, "Running Generation")
cap = caption.pc_caption(model_b32, pc, cond_scale)
st.text(cap)
prog.progress(1.0, "Idle")
if image_examples(samples_index.cap, 3, example_text="Examples (Choose one of the following 3D shapes)"):
queue_auto_submit("capauto")
def demo_pc2img():
with st.form("sdform"):
load_data = misc_utils.input_3d_shape('sd')
prompt = st.text_input("Prompt (Optional)", key='sdtprompt')
noise_scale = st.slider('Variation Level', 0, 5, 1)
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
steps = st.slider('Diffusion Steps', 8, 50, 25)
width = 640 # st.slider('Width', 480, 640, step=32)
height = 640 # st.slider('Height', 480, 640, step=32)
if st.form_submit_button("Generate") or auto_submit("sdauto"):
pc = load_data(prog)
col2 = misc_utils.render_pc(pc)
prog.progress(0.49, "Running Generation")
if torch.cuda.is_available():
with sys.clip_move_lock:
clip_model.cpu()
img = sd_pc2img.pc_to_image(
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
)
if torch.cuda.is_available():
with sys.clip_move_lock:
clip_model.cuda()
with col2:
st.image(img)
prog.progress(1.0, "Idle")
if image_examples(samples_index.sd, 3, example_text="Examples (Choose one of the following 3D shapes)"):
queue_auto_submit("sdauto")
def retrieval_results(results):
st.caption("Click the link to view the 3D shape")
for i in range(len(results) // 4):
cols = st.columns(4)
for j in range(4):
idx = i * 4 + j
if idx >= len(results):
continue
entry = results[idx]
with cols[j]:
ext_link = f"https://objaverse.allenai.org/explore/?query={entry['u']}"
st.image(entry['img'])
# st.markdown(f"[![thumbnail {entry['desc'].replace('\n', ' ')}]({entry['img']})]({ext_link})")
# st.text(entry['name'])
quote_name = entry['name'].replace('[', '\\[').replace(']', '\\]').replace('\n', ' ')
st.markdown(f"[{quote_name}]({ext_link})")
def retrieval_filter_expand(key):
with st.expander("Filters"):
sim_th = st.slider("Similarity Threshold", 0.05, 0.5, 0.1, key=key + 'rtsimth')
tag = st.text_input("Has Tag", "", key=key + 'rthastag')
col1, col2 = st.columns(2)
face_min = int(col1.text_input("Face Count Min", "0", key=key + 'rtfcmin'))
face_max = int(col2.text_input("Face Count Max", "34985808", key=key + 'rtfcmax'))
col1, col2 = st.columns(2)
anim_min = int(col1.text_input("Animation Count Min", "0", key=key + 'rtacmin'))
anim_max = int(col2.text_input("Animation Count Max", "563", key=key + 'rtacmax'))
tag_n = not bool(tag.strip())
anim_n = not (anim_min > 0 or anim_max < 563)
face_n = not (face_min > 0 or face_max < 34985808)
filter_fn = lambda x: (
(anim_n or anim_min <= x['anims'] <= anim_max)
and (face_n or face_min <= x['faces'] <= face_max)
and (tag_n or tag in x['tags'])
)
return sim_th, filter_fn
def demo_retrieval():
with tab_text:
with st.form("rtextform"):
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rtext')
text = st.text_input("Input Text", key="inputrtext")
sim_th, filter_fn = retrieval_filter_expand('text')
if st.form_submit_button("Run with Text") or auto_submit("rtextauto"):
prog.progress(0.49, "Computing Embeddings")
device = clip_model.device
tn = clip_prep(
text=[text], return_tensors='pt', truncation=True, max_length=76
).to(device)
enc = clip_model.get_text_features(**tn).float().cpu()
prog.progress(0.7, "Running Retrieval")
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
prog.progress(1.0, "Idle")
picked_sample = st.selectbox("Examples", ["Select..."] + samples_index.retrieval_texts)
text_last_example = st.session_state.get('text_last_example', None)
if text_last_example is None:
st.session_state.text_last_example = picked_sample
elif text_last_example != picked_sample and picked_sample != "Select...":
st.session_state.text_last_example = picked_sample
sq("inputrtext", picked_sample)
queue_auto_submit("rtextauto")
with tab_img:
submit = False
with st.form("rimgform"):
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rimage')
pic = st.file_uploader("Upload an Image", key='rimageinput')
sim_th, filter_fn = retrieval_filter_expand('image')
if st.form_submit_button("Run with Image"):
submit = True
results_container = st.container()
sample_got = image_examples(samples_index.iret, 4, 'rimageinput')
if sample_got:
pic = sample_got
if sample_got or submit:
img = Image.open(pic)
with results_container:
st.image(img)
prog.progress(0.49, "Computing Embeddings")
device = clip_model.device
tn = clip_prep(images=[img], return_tensors="pt").to(device)
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
prog.progress(0.7, "Running Retrieval")
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
prog.progress(1.0, "Idle")
with tab_pc:
with st.form("rpcform"):
k = st.slider("Shapes to Retrieve", 1, 100, 16, key='rpc')
load_data = misc_utils.input_3d_shape('retpc')
sim_th, filter_fn = retrieval_filter_expand('pc')
if st.form_submit_button("Run with Shape") or auto_submit('rpcauto'):
pc = load_data(prog)
col2 = misc_utils.render_pc(pc)
prog.progress(0.49, "Computing Embeddings")
ref_dev = next(model_g14.parameters()).device
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
prog.progress(0.7, "Running Retrieval")
retrieval_results(retrieval.retrieve(enc, k, sim_th, filter_fn))
prog.progress(1.0, "Idle")
if image_examples(samples_index.pret, 3):
queue_auto_submit("rpcauto")
try:
with tab_cls:
demo_classification()
with tab_cap:
demo_captioning()
with tab_sd:
demo_pc2img()
demo_retrieval()
except Exception:
import traceback
st.error(traceback.format_exc().replace("\n", " \n"))