Spaces:
Running
on
T4
Running
on
T4
eliphatfs
commited on
Commit
·
cd542fa
1
Parent(s):
471a386
Better UX: no refresh inside form.
Browse files
app.py
CHANGED
@@ -5,10 +5,12 @@ from huggingface_hub import HfFolder, snapshot_download
|
|
5 |
|
6 |
@st.cache_data
|
7 |
def load_support():
|
8 |
-
|
|
|
9 |
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
|
10 |
|
11 |
|
|
|
12 |
load_support()
|
13 |
|
14 |
|
@@ -43,13 +45,15 @@ torch.set_grad_enabled(False)
|
|
43 |
|
44 |
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
45 |
|
|
|
46 |
st.title("OpenShape Demo")
|
|
|
47 |
prog = st.progress(0.0, "Idle")
|
48 |
-
tab_cls,
|
49 |
"Classification",
|
50 |
-
"Retrieval
|
51 |
-
"Retrieval
|
52 |
-
"Retrieval
|
53 |
"Image Generation",
|
54 |
"Captioning",
|
55 |
])
|
@@ -62,7 +66,9 @@ def demo_classification():
|
|
62 |
if len(cats) > 64:
|
63 |
st.error('Maximum 64 custom categories supported in the demo')
|
64 |
return
|
65 |
-
|
|
|
|
|
66 |
pc = load_data(prog)
|
67 |
col2 = misc_utils.render_pc(pc)
|
68 |
prog.progress(0.5, "Running Classification")
|
@@ -72,7 +78,7 @@ def demo_classification():
|
|
72 |
st.text(cat)
|
73 |
st.caption("Similarity %.4f" % sim)
|
74 |
prog.progress(1.0, "Idle")
|
75 |
-
if
|
76 |
pc = load_data(prog)
|
77 |
col2 = misc_utils.render_pc(pc)
|
78 |
prog.progress(0.5, "Computing Category Embeddings")
|
@@ -89,40 +95,42 @@ def demo_classification():
|
|
89 |
|
90 |
|
91 |
def demo_captioning():
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
101 |
|
102 |
|
103 |
def demo_pc2img():
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
|
127 |
|
128 |
def retrieval_results(results):
|
@@ -144,43 +152,46 @@ def retrieval_results(results):
|
|
144 |
|
145 |
def demo_retrieval():
|
146 |
with tab_text:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
157 |
|
158 |
with tab_img:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
171 |
|
172 |
with tab_pc:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
184 |
|
185 |
|
186 |
try:
|
|
|
5 |
|
6 |
@st.cache_data
|
7 |
def load_support():
|
8 |
+
if st.secrets.has_key('etoken'):
|
9 |
+
HfFolder().save_token(st.secrets['etoken'])
|
10 |
sys.path.append(snapshot_download("OpenShape/openshape-demo-support"))
|
11 |
|
12 |
|
13 |
+
# st.set_page_config(layout='wide')
|
14 |
load_support()
|
15 |
|
16 |
|
|
|
45 |
|
46 |
from openshape.demo import misc_utils, classification, caption, sd_pc2img, retrieval
|
47 |
|
48 |
+
|
49 |
st.title("OpenShape Demo")
|
50 |
+
st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
|
51 |
prog = st.progress(0.0, "Idle")
|
52 |
+
tab_cls, tab_img, tab_text, tab_pc, tab_sd, tab_cap = st.tabs([
|
53 |
"Classification",
|
54 |
+
"Retrieval w/ Image",
|
55 |
+
"Retrieval w/ Text",
|
56 |
+
"Retrieval w/ 3D",
|
57 |
"Image Generation",
|
58 |
"Captioning",
|
59 |
])
|
|
|
66 |
if len(cats) > 64:
|
67 |
st.error('Maximum 64 custom categories supported in the demo')
|
68 |
return
|
69 |
+
lvis_run = st.button("Run Classification on LVIS Categories")
|
70 |
+
custom_run = st.button("Run Classification on Custom Categories")
|
71 |
+
if lvis_run:
|
72 |
pc = load_data(prog)
|
73 |
col2 = misc_utils.render_pc(pc)
|
74 |
prog.progress(0.5, "Running Classification")
|
|
|
78 |
st.text(cat)
|
79 |
st.caption("Similarity %.4f" % sim)
|
80 |
prog.progress(1.0, "Idle")
|
81 |
+
if custom_run:
|
82 |
pc = load_data(prog)
|
83 |
col2 = misc_utils.render_pc(pc)
|
84 |
prog.progress(0.5, "Computing Category Embeddings")
|
|
|
95 |
|
96 |
|
97 |
def demo_captioning():
|
98 |
+
with st.form("capform"):
|
99 |
+
load_data = misc_utils.input_3d_shape('cap')
|
100 |
+
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0)
|
101 |
+
if st.form_submit_button("Generate a Caption"):
|
102 |
+
pc = load_data(prog)
|
103 |
+
col2 = misc_utils.render_pc(pc)
|
104 |
+
prog.progress(0.5, "Running Generation")
|
105 |
+
cap = caption.pc_caption(model_b32, pc, cond_scale)
|
106 |
+
st.text(cap)
|
107 |
+
prog.progress(1.0, "Idle")
|
108 |
|
109 |
|
110 |
def demo_pc2img():
|
111 |
+
with st.form("sdform"):
|
112 |
+
load_data = misc_utils.input_3d_shape('sd')
|
113 |
+
prompt = st.text_input("Prompt (Optional)")
|
114 |
+
noise_scale = st.slider('Variation Level', 0, 5, 1)
|
115 |
+
cfg_scale = st.slider('Guidance Scale', 0.0, 30.0, 10.0)
|
116 |
+
steps = st.slider('Diffusion Steps', 8, 50, 25)
|
117 |
+
width = 640 # st.slider('Width', 480, 640, step=32)
|
118 |
+
height = 640 # st.slider('Height', 480, 640, step=32)
|
119 |
+
if st.form_submit_button("Generate"):
|
120 |
+
pc = load_data(prog)
|
121 |
+
col2 = misc_utils.render_pc(pc)
|
122 |
+
prog.progress(0.49, "Running Generation")
|
123 |
+
if torch.cuda.is_available():
|
124 |
+
clip_model.cpu()
|
125 |
+
img = sd_pc2img.pc_to_image(
|
126 |
+
model_l14, pc, prompt, noise_scale, width, height, cfg_scale, steps,
|
127 |
+
lambda i, t, _: prog.progress(0.49 + i / (steps + 1) / 2, "Running Diffusion Step %d" % i)
|
128 |
+
)
|
129 |
+
if torch.cuda.is_available():
|
130 |
+
clip_model.cuda()
|
131 |
+
with col2:
|
132 |
+
st.image(img)
|
133 |
+
prog.progress(1.0, "Idle")
|
134 |
|
135 |
|
136 |
def retrieval_results(results):
|
|
|
152 |
|
153 |
def demo_retrieval():
|
154 |
with tab_text:
|
155 |
+
with st.form("rtextform"):
|
156 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rtext')
|
157 |
+
text = st.text_input("Input Text")
|
158 |
+
if st.form_submit_button("Run with Text"):
|
159 |
+
prog.progress(0.49, "Computing Embeddings")
|
160 |
+
device = clip_model.device
|
161 |
+
tn = clip_prep(text=[text], return_tensors='pt', truncation=True, max_length=76).to(device)
|
162 |
+
enc = clip_model.get_text_features(**tn).float().cpu()
|
163 |
+
prog.progress(0.7, "Running Retrieval")
|
164 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
165 |
+
prog.progress(1.0, "Idle")
|
166 |
|
167 |
with tab_img:
|
168 |
+
with st.form("rimgform"):
|
169 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rimage')
|
170 |
+
pic = st.file_uploader("Upload an Image")
|
171 |
+
if st.form_submit_button("Run with Image"):
|
172 |
+
img = Image.open(pic)
|
173 |
+
st.image(img)
|
174 |
+
prog.progress(0.49, "Computing Embeddings")
|
175 |
+
device = clip_model.device
|
176 |
+
tn = clip_prep(images=[img], return_tensors="pt").to(device)
|
177 |
+
enc = clip_model.get_image_features(pixel_values=tn['pixel_values'].type(half)).float().cpu()
|
178 |
+
prog.progress(0.7, "Running Retrieval")
|
179 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
180 |
+
prog.progress(1.0, "Idle")
|
181 |
|
182 |
with tab_pc:
|
183 |
+
with st.form("rpcform"):
|
184 |
+
k = st.slider("# Shapes to Retrieve", 1, 100, 16, key='rpc')
|
185 |
+
load_data = misc_utils.input_3d_shape('retpc')
|
186 |
+
if st.form_submit_button("Run with Shape"):
|
187 |
+
pc = load_data(prog)
|
188 |
+
col2 = misc_utils.render_pc(pc)
|
189 |
+
prog.progress(0.49, "Computing Embeddings")
|
190 |
+
ref_dev = next(model_g14.parameters()).device
|
191 |
+
enc = model_g14(torch.tensor(pc[:, [0, 2, 1, 3, 4, 5]].T[None], device=ref_dev)).cpu()
|
192 |
+
prog.progress(0.7, "Running Retrieval")
|
193 |
+
retrieval_results(retrieval.retrieve(enc, k))
|
194 |
+
prog.progress(1.0, "Idle")
|
195 |
|
196 |
|
197 |
try:
|