Spaces:
Sleeping
Sleeping
eliphatfs
commited on
Commit
·
e08783a
1
Parent(s):
d154ca2
Updates.
Browse files- app.py +10 -23
- openshape/__init__.py +0 -1
- openshape/caption.py +0 -163
app.py
CHANGED
@@ -76,28 +76,15 @@ def render_pc(pc):
|
|
76 |
|
77 |
|
78 |
try:
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
st.text(cat)
|
90 |
-
st.caption("Similarity %.4f" % sim)
|
91 |
-
prog.progress(1.0, "Idle")
|
92 |
-
|
93 |
-
with tab_cap:
|
94 |
-
cond_scale = st.slider('Conditioning Scale', 0.0, 4.0, 2.0)
|
95 |
-
if st.button("Generate a Caption"):
|
96 |
-
pc = load_data()
|
97 |
-
col2 = render_pc(pc)
|
98 |
-
prog.progress(0.5, "Running Generation")
|
99 |
-
cap = openshape.pc_caption(model_b32, pc, cond_scale)
|
100 |
-
st.text(cap)
|
101 |
-
prog.progress(1.0, "Idle")
|
102 |
except Exception as exc:
|
103 |
st.error(repr(exc))
|
|
|
76 |
|
77 |
|
78 |
try:
|
79 |
+
if st.button("Run Classification on LVIS Categories"):
|
80 |
+
pc = load_data()
|
81 |
+
col2 = render_pc(pc)
|
82 |
+
prog.progress(0.5, "Running Classification")
|
83 |
+
pred = openshape.pred_lvis_sims(model_g14, pc)
|
84 |
+
with col2:
|
85 |
+
for i, (cat, sim) in zip(range(5), pred.items()):
|
86 |
+
st.text(cat)
|
87 |
+
st.caption("Similarity %.4f" % sim)
|
88 |
+
prog.progress(1.0, "Idle")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
except Exception as exc:
|
90 |
st.error(repr(exc))
|
openshape/__init__.py
CHANGED
@@ -49,5 +49,4 @@ def load_pc_encoder(name):
|
|
49 |
|
50 |
# only import the functions in demo!
|
51 |
# from .sd_pc2img import pc_to_image
|
52 |
-
from .caption import pc_caption
|
53 |
from .classification import pred_lvis_sims
|
|
|
49 |
|
50 |
# only import the functions in demo!
|
51 |
# from .sd_pc2img import pc_to_image
|
|
|
52 |
from .classification import pred_lvis_sims
|
openshape/caption.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
from torch import nn
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from typing import Tuple, List, Union, Optional
|
5 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
-
|
8 |
-
|
9 |
-
N = type(None)
|
10 |
-
V = np.array
|
11 |
-
ARRAY = np.ndarray
|
12 |
-
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
|
13 |
-
VS = Union[Tuple[V, ...], List[V]]
|
14 |
-
VN = Union[V, N]
|
15 |
-
VNS = Union[VS, N]
|
16 |
-
T = torch.Tensor
|
17 |
-
TS = Union[Tuple[T, ...], List[T]]
|
18 |
-
TN = Optional[T]
|
19 |
-
TNS = Union[Tuple[TN, ...], List[TN]]
|
20 |
-
TSN = Optional[TS]
|
21 |
-
TA = Union[T, ARRAY]
|
22 |
-
|
23 |
-
|
24 |
-
D = torch.device
|
25 |
-
|
26 |
-
|
27 |
-
class MLP(nn.Module):
|
28 |
-
|
29 |
-
def forward(self, x: T) -> T:
|
30 |
-
return self.model(x)
|
31 |
-
|
32 |
-
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
|
33 |
-
super(MLP, self).__init__()
|
34 |
-
layers = []
|
35 |
-
for i in range(len(sizes) -1):
|
36 |
-
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
|
37 |
-
if i < len(sizes) - 2:
|
38 |
-
layers.append(act())
|
39 |
-
self.model = nn.Sequential(*layers)
|
40 |
-
|
41 |
-
|
42 |
-
class ClipCaptionModel(nn.Module):
|
43 |
-
|
44 |
-
#@functools.lru_cache #FIXME
|
45 |
-
def get_dummy_token(self, batch_size: int, device: D) -> T:
|
46 |
-
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
|
47 |
-
|
48 |
-
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None):
|
49 |
-
embedding_text = self.gpt.transformer.wte(tokens)
|
50 |
-
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
|
51 |
-
#print(embedding_text.size()) #torch.Size([5, 67, 768])
|
52 |
-
#print(prefix_projections.size()) #torch.Size([5, 1, 768])
|
53 |
-
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
|
54 |
-
if labels is not None:
|
55 |
-
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
56 |
-
labels = torch.cat((dummy_token, tokens), dim=1)
|
57 |
-
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
58 |
-
return out
|
59 |
-
|
60 |
-
def __init__(self, prefix_length: int, prefix_size: int = 512):
|
61 |
-
super(ClipCaptionModel, self).__init__()
|
62 |
-
self.prefix_length = prefix_length
|
63 |
-
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
|
64 |
-
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
65 |
-
if prefix_length > 10: # not enough memory
|
66 |
-
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length)
|
67 |
-
else:
|
68 |
-
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length))
|
69 |
-
|
70 |
-
|
71 |
-
class ClipCaptionPrefix(ClipCaptionModel):
|
72 |
-
|
73 |
-
def parameters(self, recurse: bool = True):
|
74 |
-
return self.clip_project.parameters()
|
75 |
-
|
76 |
-
def train(self, mode: bool = True):
|
77 |
-
super(ClipCaptionPrefix, self).train(mode)
|
78 |
-
self.gpt.eval()
|
79 |
-
return self
|
80 |
-
|
81 |
-
|
82 |
-
def generate2(
|
83 |
-
model,
|
84 |
-
tokenizer,
|
85 |
-
tokens=None,
|
86 |
-
prompt=None,
|
87 |
-
embed=None,
|
88 |
-
entry_count=1,
|
89 |
-
entry_length=67, # maximum number of words
|
90 |
-
top_p=0.8,
|
91 |
-
temperature=1.,
|
92 |
-
stop_token: str = '.',
|
93 |
-
):
|
94 |
-
model.eval()
|
95 |
-
generated_num = 0
|
96 |
-
generated_list = []
|
97 |
-
stop_token_index = tokenizer.encode(stop_token)[0]
|
98 |
-
filter_value = -float("Inf")
|
99 |
-
device = next(model.parameters()).device
|
100 |
-
score_col = []
|
101 |
-
with torch.no_grad():
|
102 |
-
|
103 |
-
for entry_idx in range(entry_count):
|
104 |
-
if embed is not None:
|
105 |
-
generated = embed
|
106 |
-
else:
|
107 |
-
if tokens is None:
|
108 |
-
tokens = torch.tensor(tokenizer.encode(prompt))
|
109 |
-
tokens = tokens.unsqueeze(0).to(device)
|
110 |
-
|
111 |
-
generated = model.gpt.transformer.wte(tokens)
|
112 |
-
|
113 |
-
for i in range(entry_length):
|
114 |
-
|
115 |
-
outputs = model.gpt(inputs_embeds=generated)
|
116 |
-
logits = outputs.logits
|
117 |
-
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
118 |
-
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
119 |
-
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
120 |
-
sorted_indices_to_remove = cumulative_probs > top_p
|
121 |
-
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
122 |
-
..., :-1
|
123 |
-
].clone()
|
124 |
-
sorted_indices_to_remove[..., 0] = 0
|
125 |
-
|
126 |
-
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
127 |
-
logits[:, indices_to_remove] = filter_value
|
128 |
-
next_token = torch.argmax(torch.softmax(logits, dim=-1), -1).reshape(1, 1)
|
129 |
-
score = torch.softmax(logits, dim=-1).reshape(-1)[next_token.item()].item()
|
130 |
-
score_col.append(score)
|
131 |
-
next_token_embed = model.gpt.transformer.wte(next_token)
|
132 |
-
if tokens is None:
|
133 |
-
tokens = next_token
|
134 |
-
else:
|
135 |
-
tokens = torch.cat((tokens, next_token), dim=1)
|
136 |
-
generated = torch.cat((generated, next_token_embed), dim=1)
|
137 |
-
if stop_token_index == next_token.item():
|
138 |
-
break
|
139 |
-
|
140 |
-
output_list = list(tokens.squeeze(0).cpu().numpy())
|
141 |
-
output_text = tokenizer.decode(output_list)
|
142 |
-
generated_list.append(output_text)
|
143 |
-
return generated_list[0]
|
144 |
-
|
145 |
-
|
146 |
-
@torch.no_grad()
|
147 |
-
def pc_caption(pc_encoder: torch.nn.Module, pc, cond_scale):
|
148 |
-
ref_dev = next(pc_encoder.parameters()).device
|
149 |
-
prefix = pc_encoder(torch.tensor(pc.T[None], device=ref_dev))
|
150 |
-
prefix = prefix.float() * cond_scale
|
151 |
-
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
152 |
-
text = generate2(model, tokenizer, embed=prefix_embed)
|
153 |
-
return text
|
154 |
-
|
155 |
-
|
156 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
157 |
-
prefix_length = 10
|
158 |
-
model = ClipCaptionModel(prefix_length)
|
159 |
-
# print(model.gpt_embedding_size)
|
160 |
-
model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt', token=True), map_location='cpu'))
|
161 |
-
model.eval()
|
162 |
-
if torch.cuda.is_available():
|
163 |
-
model = model.cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|