from torch import nn import numpy as np import torch from typing import Tuple, List, Union, Optional from transformers import GPT2Tokenizer, GPT2LMHeadModel from huggingface_hub import hf_hub_download N = type(None) V = np.array ARRAY = np.ndarray ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] VS = Union[Tuple[V, ...], List[V]] VN = Union[V, N] VNS = Union[VS, N] T = torch.Tensor TS = Union[Tuple[T, ...], List[T]] TN = Optional[T] TNS = Union[Tuple[TN, ...], List[TN]] TSN = Optional[TS] TA = Union[T, ARRAY] D = torch.device class MLP(nn.Module): def forward(self, x: T) -> T: return self.model(x) def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): super(MLP, self).__init__() layers = [] for i in range(len(sizes) -1): layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) if i < len(sizes) - 2: layers.append(act()) self.model = nn.Sequential(*layers) class ClipCaptionModel(nn.Module): #@functools.lru_cache #FIXME def get_dummy_token(self, batch_size: int, device: D) -> T: return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): embedding_text = self.gpt.transformer.wte(tokens) prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) #print(embedding_text.size()) #torch.Size([5, 67, 768]) #print(prefix_projections.size()) #torch.Size([5, 1, 768]) embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) if labels is not None: dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) labels = torch.cat((dummy_token, tokens), dim=1) out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) return out def __init__(self, prefix_length: int, prefix_size: int = 512): super(ClipCaptionModel, self).__init__() self.prefix_length = prefix_length self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] if prefix_length > 10: # not enough memory self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) else: self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) class ClipCaptionPrefix(ClipCaptionModel): def parameters(self, recurse: bool = True): return self.clip_project.parameters() def train(self, mode: bool = True): super(ClipCaptionPrefix, self).train(mode) self.gpt.eval() return self def generate2( model, tokenizer, tokens=None, prompt=None, embed=None, entry_count=1, entry_length=67, # maximum number of words top_p=0.8, temperature=1., stop_token: str = '.', ): model.eval() generated_num = 0 generated_list = [] stop_token_index = tokenizer.encode(stop_token)[0] filter_value = -float("Inf") device = next(model.parameters()).device score_col = [] with torch.no_grad(): for entry_idx in range(entry_count): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = model.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = model.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1 ].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[:, indices_to_remove] = filter_value next_token = torch.argmax(torch.softmax(logits, dim=-1), -1).reshape(1, 1) score = torch.softmax(logits, dim=-1).reshape(-1)[next_token.item()].item() score_col.append(score) next_token_embed = model.gpt.transformer.wte(next_token) if tokens is None: tokens = next_token else: tokens = torch.cat((tokens, next_token), dim=1) generated = torch.cat((generated, next_token_embed), dim=1) if stop_token_index == next_token.item(): break output_list = list(tokens.squeeze(0).cpu().numpy()) output_text = tokenizer.decode(output_list) generated_list.append(output_text) return generated_list[0] @torch.no_grad() def pc_caption(pc_encoder: torch.nn.Module, pc, cond_scale): ref_dev = next(pc_encoder.parameters()).device prefix = pc_encoder(torch.tensor(pc.T[None], device=ref_dev)) prefix = prefix.float() * cond_scale prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) text, _ = generate2(model, tokenizer, embed=prefix_embed) return text tokenizer = GPT2Tokenizer.from_pretrained("gpt2") prefix_length = 10 model = ClipCaptionModel(prefix_length) # print(model.gpt_embedding_size) model.load_state_dict(torch.load(hf_hub_download('OpenShape/clipcap-cc', 'conceptual_weights.pt', token=True), map_location='cpu')) model.eval() if torch.cuda.is_available(): model = model.cuda()