Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,466 Bytes
71de706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import typing
import julius
import numpy as np
import torch
from . import util
class DSPMixin:
_original_batch_size = None
_original_num_channels = None
_padded_signal_length = None
def _preprocess_signal_for_windowing(self, window_duration, hop_duration):
self._original_batch_size = self.batch_size
self._original_num_channels = self.num_channels
window_length = int(window_duration * self.sample_rate)
hop_length = int(hop_duration * self.sample_rate)
if window_length % hop_length != 0:
factor = window_length // hop_length
window_length = factor * hop_length
self.zero_pad(hop_length, hop_length)
self._padded_signal_length = self.signal_length
return window_length, hop_length
def windows(
self, window_duration: float, hop_duration: float, preprocess: bool = True
):
"""Generator which yields windows of specified duration from signal with a specified
hop length.
Parameters
----------
window_duration : float
Duration of every window in seconds.
hop_duration : float
Hop between windows in seconds.
preprocess : bool, optional
Whether to preprocess the signal, so that the first sample is in
the middle of the first window, by default True
Yields
------
AudioSignal
Each window is returned as an AudioSignal.
"""
if preprocess:
window_length, hop_length = self._preprocess_signal_for_windowing(
window_duration, hop_duration
)
self.audio_data = self.audio_data.reshape(-1, 1, self.signal_length)
for b in range(self.batch_size):
i = 0
start_idx = i * hop_length
while True:
start_idx = i * hop_length
i += 1
end_idx = start_idx + window_length
if end_idx > self.signal_length:
break
yield self[b, ..., start_idx:end_idx]
def collect_windows(
self, window_duration: float, hop_duration: float, preprocess: bool = True
):
"""Reshapes signal into windows of specified duration from signal with a specified
hop length. Window are placed along the batch dimension. Use with
:py:func:`audiotools.core.dsp.DSPMixin.overlap_and_add` to reconstruct the
original signal.
Parameters
----------
window_duration : float
Duration of every window in seconds.
hop_duration : float
Hop between windows in seconds.
preprocess : bool, optional
Whether to preprocess the signal, so that the first sample is in
the middle of the first window, by default True
Returns
-------
AudioSignal
AudioSignal unfolded with shape ``(nb * nch * num_windows, 1, window_length)``
"""
if preprocess:
window_length, hop_length = self._preprocess_signal_for_windowing(
window_duration, hop_duration
)
# self.audio_data: (nb, nch, nt).
unfolded = torch.nn.functional.unfold(
self.audio_data.reshape(-1, 1, 1, self.signal_length),
kernel_size=(1, window_length),
stride=(1, hop_length),
)
# unfolded: (nb * nch, window_length, num_windows).
# -> (nb * nch * num_windows, 1, window_length)
unfolded = unfolded.permute(0, 2, 1).reshape(-1, 1, window_length)
self.audio_data = unfolded
return self
def overlap_and_add(self, hop_duration: float):
"""Function which takes a list of windows and overlap adds them into a
signal the same length as ``audio_signal``.
Parameters
----------
hop_duration : float
How much to shift for each window
(overlap is window_duration - hop_duration) in seconds.
Returns
-------
AudioSignal
overlap-and-added signal.
"""
hop_length = int(hop_duration * self.sample_rate)
window_length = self.signal_length
nb, nch = self._original_batch_size, self._original_num_channels
unfolded = self.audio_data.reshape(nb * nch, -1, window_length).permute(0, 2, 1)
folded = torch.nn.functional.fold(
unfolded,
output_size=(1, self._padded_signal_length),
kernel_size=(1, window_length),
stride=(1, hop_length),
)
norm = torch.ones_like(unfolded, device=unfolded.device)
norm = torch.nn.functional.fold(
norm,
output_size=(1, self._padded_signal_length),
kernel_size=(1, window_length),
stride=(1, hop_length),
)
folded = folded / norm
folded = folded.reshape(nb, nch, -1)
self.audio_data = folded
self.trim(hop_length, hop_length)
return self
def low_pass(
self, cutoffs: typing.Union[torch.Tensor, np.ndarray, float], zeros: int = 51
):
"""Low-passes the signal in-place. Each item in the batch
can have a different low-pass cutoff, if the input
to this signal is an array or tensor. If a float, all
items are given the same low-pass filter.
Parameters
----------
cutoffs : typing.Union[torch.Tensor, np.ndarray, float]
Cutoff in Hz of low-pass filter.
zeros : int, optional
Number of taps to use in low-pass filter, by default 51
Returns
-------
AudioSignal
Low-passed AudioSignal.
"""
cutoffs = util.ensure_tensor(cutoffs, 2, self.batch_size)
cutoffs = cutoffs / self.sample_rate
filtered = torch.empty_like(self.audio_data)
for i, cutoff in enumerate(cutoffs):
lp_filter = julius.LowPassFilter(cutoff.cpu(), zeros=zeros).to(self.device)
filtered[i] = lp_filter(self.audio_data[i])
self.audio_data = filtered
self.stft_data = None
return self
def high_pass(
self, cutoffs: typing.Union[torch.Tensor, np.ndarray, float], zeros: int = 51
):
"""High-passes the signal in-place. Each item in the batch
can have a different high-pass cutoff, if the input
to this signal is an array or tensor. If a float, all
items are given the same high-pass filter.
Parameters
----------
cutoffs : typing.Union[torch.Tensor, np.ndarray, float]
Cutoff in Hz of high-pass filter.
zeros : int, optional
Number of taps to use in high-pass filter, by default 51
Returns
-------
AudioSignal
High-passed AudioSignal.
"""
cutoffs = util.ensure_tensor(cutoffs, 2, self.batch_size)
cutoffs = cutoffs / self.sample_rate
filtered = torch.empty_like(self.audio_data)
for i, cutoff in enumerate(cutoffs):
hp_filter = julius.HighPassFilter(cutoff.cpu(), zeros=zeros).to(self.device)
filtered[i] = hp_filter(self.audio_data[i])
self.audio_data = filtered
self.stft_data = None
return self
def mask_frequencies(
self,
fmin_hz: typing.Union[torch.Tensor, np.ndarray, float],
fmax_hz: typing.Union[torch.Tensor, np.ndarray, float],
val: float = 0.0,
):
"""Masks frequencies between ``fmin_hz`` and ``fmax_hz``, and fills them
with the value specified by ``val``. Useful for implementing SpecAug.
The min and max can be different for every item in the batch.
Parameters
----------
fmin_hz : typing.Union[torch.Tensor, np.ndarray, float]
Lower end of band to mask out.
fmax_hz : typing.Union[torch.Tensor, np.ndarray, float]
Upper end of band to mask out.
val : float, optional
Value to fill in, by default 0.0
Returns
-------
AudioSignal
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
masked audio data.
"""
# SpecAug
mag, phase = self.magnitude, self.phase
fmin_hz = util.ensure_tensor(fmin_hz, ndim=mag.ndim)
fmax_hz = util.ensure_tensor(fmax_hz, ndim=mag.ndim)
assert torch.all(fmin_hz < fmax_hz)
# build mask
nbins = mag.shape[-2]
bins_hz = torch.linspace(0, self.sample_rate / 2, nbins, device=self.device)
bins_hz = bins_hz[None, None, :, None].repeat(
self.batch_size, 1, 1, mag.shape[-1]
)
mask = (fmin_hz <= bins_hz) & (bins_hz < fmax_hz)
mask = mask.to(self.device)
mag = mag.masked_fill(mask, val)
phase = phase.masked_fill(mask, val)
self.stft_data = mag * torch.exp(1j * phase)
return self
def mask_timesteps(
self,
tmin_s: typing.Union[torch.Tensor, np.ndarray, float],
tmax_s: typing.Union[torch.Tensor, np.ndarray, float],
val: float = 0.0,
):
"""Masks timesteps between ``tmin_s`` and ``tmax_s``, and fills them
with the value specified by ``val``. Useful for implementing SpecAug.
The min and max can be different for every item in the batch.
Parameters
----------
tmin_s : typing.Union[torch.Tensor, np.ndarray, float]
Lower end of timesteps to mask out.
tmax_s : typing.Union[torch.Tensor, np.ndarray, float]
Upper end of timesteps to mask out.
val : float, optional
Value to fill in, by default 0.0
Returns
-------
AudioSignal
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
masked audio data.
"""
# SpecAug
mag, phase = self.magnitude, self.phase
tmin_s = util.ensure_tensor(tmin_s, ndim=mag.ndim)
tmax_s = util.ensure_tensor(tmax_s, ndim=mag.ndim)
assert torch.all(tmin_s < tmax_s)
# build mask
nt = mag.shape[-1]
bins_t = torch.linspace(0, self.signal_duration, nt, device=self.device)
bins_t = bins_t[None, None, None, :].repeat(
self.batch_size, 1, mag.shape[-2], 1
)
mask = (tmin_s <= bins_t) & (bins_t < tmax_s)
mag = mag.masked_fill(mask, val)
phase = phase.masked_fill(mask, val)
self.stft_data = mag * torch.exp(1j * phase)
return self
def mask_low_magnitudes(
self, db_cutoff: typing.Union[torch.Tensor, np.ndarray, float], val: float = 0.0
):
"""Mask away magnitudes below a specified threshold, which
can be different for every item in the batch.
Parameters
----------
db_cutoff : typing.Union[torch.Tensor, np.ndarray, float]
Decibel value for which things below it will be masked away.
val : float, optional
Value to fill in for masked portions, by default 0.0
Returns
-------
AudioSignal
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
masked audio data.
"""
mag = self.magnitude
log_mag = self.log_magnitude()
db_cutoff = util.ensure_tensor(db_cutoff, ndim=mag.ndim)
mask = log_mag < db_cutoff
mag = mag.masked_fill(mask, val)
self.magnitude = mag
return self
def shift_phase(self, shift: typing.Union[torch.Tensor, np.ndarray, float]):
"""Shifts the phase by a constant value.
Parameters
----------
shift : typing.Union[torch.Tensor, np.ndarray, float]
What to shift the phase by.
Returns
-------
AudioSignal
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
masked audio data.
"""
shift = util.ensure_tensor(shift, ndim=self.phase.ndim)
self.phase = self.phase + shift
return self
def corrupt_phase(self, scale: typing.Union[torch.Tensor, np.ndarray, float]):
"""Corrupts the phase randomly by some scaled value.
Parameters
----------
scale : typing.Union[torch.Tensor, np.ndarray, float]
Standard deviation of noise to add to the phase.
Returns
-------
AudioSignal
Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
masked audio data.
"""
scale = util.ensure_tensor(scale, ndim=self.phase.ndim)
self.phase = self.phase + scale * torch.randn_like(self.phase)
return self
def preemphasis(self, coef: float = 0.85):
"""Applies pre-emphasis to audio signal.
Parameters
----------
coef : float, optional
How much pre-emphasis to apply, lower values do less. 0 does nothing.
by default 0.85
Returns
-------
AudioSignal
Pre-emphasized signal.
"""
kernel = torch.tensor([1, -coef, 0]).view(1, 1, -1).to(self.device)
x = self.audio_data.reshape(-1, 1, self.signal_length)
x = torch.nn.functional.conv1d(x, kernel, padding=1)
self.audio_data = x.reshape(*self.audio_data.shape)
return self
|