File size: 13,466 Bytes
71de706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import typing

import julius
import numpy as np
import torch

from . import util


class DSPMixin:
    _original_batch_size = None
    _original_num_channels = None
    _padded_signal_length = None

    def _preprocess_signal_for_windowing(self, window_duration, hop_duration):
        self._original_batch_size = self.batch_size
        self._original_num_channels = self.num_channels

        window_length = int(window_duration * self.sample_rate)
        hop_length = int(hop_duration * self.sample_rate)

        if window_length % hop_length != 0:
            factor = window_length // hop_length
            window_length = factor * hop_length

        self.zero_pad(hop_length, hop_length)
        self._padded_signal_length = self.signal_length

        return window_length, hop_length

    def windows(
        self, window_duration: float, hop_duration: float, preprocess: bool = True
    ):
        """Generator which yields windows of specified duration from signal with a specified
        hop length.

        Parameters
        ----------
        window_duration : float
            Duration of every window in seconds.
        hop_duration : float
            Hop between windows in seconds.
        preprocess : bool, optional
            Whether to preprocess the signal, so that the first sample is in
            the middle of the first window, by default True

        Yields
        ------
        AudioSignal
            Each window is returned as an AudioSignal.
        """
        if preprocess:
            window_length, hop_length = self._preprocess_signal_for_windowing(
                window_duration, hop_duration
            )

        self.audio_data = self.audio_data.reshape(-1, 1, self.signal_length)

        for b in range(self.batch_size):
            i = 0
            start_idx = i * hop_length
            while True:
                start_idx = i * hop_length
                i += 1
                end_idx = start_idx + window_length
                if end_idx > self.signal_length:
                    break
                yield self[b, ..., start_idx:end_idx]

    def collect_windows(
        self, window_duration: float, hop_duration: float, preprocess: bool = True
    ):
        """Reshapes signal into windows of specified duration from signal with a specified
        hop length. Window are placed along the batch dimension. Use with
        :py:func:`audiotools.core.dsp.DSPMixin.overlap_and_add` to reconstruct the
        original signal.

        Parameters
        ----------
        window_duration : float
            Duration of every window in seconds.
        hop_duration : float
            Hop between windows in seconds.
        preprocess : bool, optional
            Whether to preprocess the signal, so that the first sample is in
            the middle of the first window, by default True

        Returns
        -------
        AudioSignal
            AudioSignal unfolded with shape ``(nb * nch * num_windows, 1, window_length)``
        """
        if preprocess:
            window_length, hop_length = self._preprocess_signal_for_windowing(
                window_duration, hop_duration
            )

        # self.audio_data: (nb, nch, nt).
        unfolded = torch.nn.functional.unfold(
            self.audio_data.reshape(-1, 1, 1, self.signal_length),
            kernel_size=(1, window_length),
            stride=(1, hop_length),
        )
        # unfolded: (nb * nch, window_length, num_windows).
        # -> (nb * nch * num_windows, 1, window_length)
        unfolded = unfolded.permute(0, 2, 1).reshape(-1, 1, window_length)
        self.audio_data = unfolded
        return self

    def overlap_and_add(self, hop_duration: float):
        """Function which takes a list of windows and overlap adds them into a
        signal the same length as ``audio_signal``.

        Parameters
        ----------
        hop_duration : float
            How much to shift for each window
            (overlap is window_duration - hop_duration) in seconds.

        Returns
        -------
        AudioSignal
            overlap-and-added signal.
        """
        hop_length = int(hop_duration * self.sample_rate)
        window_length = self.signal_length

        nb, nch = self._original_batch_size, self._original_num_channels

        unfolded = self.audio_data.reshape(nb * nch, -1, window_length).permute(0, 2, 1)
        folded = torch.nn.functional.fold(
            unfolded,
            output_size=(1, self._padded_signal_length),
            kernel_size=(1, window_length),
            stride=(1, hop_length),
        )

        norm = torch.ones_like(unfolded, device=unfolded.device)
        norm = torch.nn.functional.fold(
            norm,
            output_size=(1, self._padded_signal_length),
            kernel_size=(1, window_length),
            stride=(1, hop_length),
        )

        folded = folded / norm

        folded = folded.reshape(nb, nch, -1)
        self.audio_data = folded
        self.trim(hop_length, hop_length)
        return self

    def low_pass(
        self, cutoffs: typing.Union[torch.Tensor, np.ndarray, float], zeros: int = 51
    ):
        """Low-passes the signal in-place. Each item in the batch
        can have a different low-pass cutoff, if the input
        to this signal is an array or tensor. If a float, all
        items are given the same low-pass filter.

        Parameters
        ----------
        cutoffs : typing.Union[torch.Tensor, np.ndarray, float]
            Cutoff in Hz of low-pass filter.
        zeros : int, optional
            Number of taps to use in low-pass filter, by default 51

        Returns
        -------
        AudioSignal
            Low-passed AudioSignal.
        """
        cutoffs = util.ensure_tensor(cutoffs, 2, self.batch_size)
        cutoffs = cutoffs / self.sample_rate
        filtered = torch.empty_like(self.audio_data)

        for i, cutoff in enumerate(cutoffs):
            lp_filter = julius.LowPassFilter(cutoff.cpu(), zeros=zeros).to(self.device)
            filtered[i] = lp_filter(self.audio_data[i])

        self.audio_data = filtered
        self.stft_data = None
        return self

    def high_pass(
        self, cutoffs: typing.Union[torch.Tensor, np.ndarray, float], zeros: int = 51
    ):
        """High-passes the signal in-place. Each item in the batch
        can have a different high-pass cutoff, if the input
        to this signal is an array or tensor. If a float, all
        items are given the same high-pass filter.

        Parameters
        ----------
        cutoffs : typing.Union[torch.Tensor, np.ndarray, float]
            Cutoff in Hz of high-pass filter.
        zeros : int, optional
            Number of taps to use in high-pass filter, by default 51

        Returns
        -------
        AudioSignal
            High-passed AudioSignal.
        """
        cutoffs = util.ensure_tensor(cutoffs, 2, self.batch_size)
        cutoffs = cutoffs / self.sample_rate
        filtered = torch.empty_like(self.audio_data)

        for i, cutoff in enumerate(cutoffs):
            hp_filter = julius.HighPassFilter(cutoff.cpu(), zeros=zeros).to(self.device)
            filtered[i] = hp_filter(self.audio_data[i])

        self.audio_data = filtered
        self.stft_data = None
        return self

    def mask_frequencies(
        self,
        fmin_hz: typing.Union[torch.Tensor, np.ndarray, float],
        fmax_hz: typing.Union[torch.Tensor, np.ndarray, float],
        val: float = 0.0,
    ):
        """Masks frequencies between ``fmin_hz`` and ``fmax_hz``, and fills them
        with the value specified by ``val``. Useful for implementing SpecAug.
        The min and max can be different for every item in the batch.

        Parameters
        ----------
        fmin_hz : typing.Union[torch.Tensor, np.ndarray, float]
            Lower end of band to mask out.
        fmax_hz : typing.Union[torch.Tensor, np.ndarray, float]
            Upper end of band to mask out.
        val : float, optional
            Value to fill in, by default 0.0

        Returns
        -------
        AudioSignal
            Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
            masked audio data.
        """
        # SpecAug
        mag, phase = self.magnitude, self.phase
        fmin_hz = util.ensure_tensor(fmin_hz, ndim=mag.ndim)
        fmax_hz = util.ensure_tensor(fmax_hz, ndim=mag.ndim)
        assert torch.all(fmin_hz < fmax_hz)

        # build mask
        nbins = mag.shape[-2]
        bins_hz = torch.linspace(0, self.sample_rate / 2, nbins, device=self.device)
        bins_hz = bins_hz[None, None, :, None].repeat(
            self.batch_size, 1, 1, mag.shape[-1]
        )
        mask = (fmin_hz <= bins_hz) & (bins_hz < fmax_hz)
        mask = mask.to(self.device)

        mag = mag.masked_fill(mask, val)
        phase = phase.masked_fill(mask, val)
        self.stft_data = mag * torch.exp(1j * phase)
        return self

    def mask_timesteps(
        self,
        tmin_s: typing.Union[torch.Tensor, np.ndarray, float],
        tmax_s: typing.Union[torch.Tensor, np.ndarray, float],
        val: float = 0.0,
    ):
        """Masks timesteps between ``tmin_s`` and ``tmax_s``, and fills them
        with the value specified by ``val``. Useful for implementing SpecAug.
        The min and max can be different for every item in the batch.

        Parameters
        ----------
        tmin_s : typing.Union[torch.Tensor, np.ndarray, float]
            Lower end of timesteps to mask out.
        tmax_s : typing.Union[torch.Tensor, np.ndarray, float]
            Upper end of timesteps to mask out.
        val : float, optional
            Value to fill in, by default 0.0

        Returns
        -------
        AudioSignal
            Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
            masked audio data.
        """
        # SpecAug
        mag, phase = self.magnitude, self.phase
        tmin_s = util.ensure_tensor(tmin_s, ndim=mag.ndim)
        tmax_s = util.ensure_tensor(tmax_s, ndim=mag.ndim)

        assert torch.all(tmin_s < tmax_s)

        # build mask
        nt = mag.shape[-1]
        bins_t = torch.linspace(0, self.signal_duration, nt, device=self.device)
        bins_t = bins_t[None, None, None, :].repeat(
            self.batch_size, 1, mag.shape[-2], 1
        )
        mask = (tmin_s <= bins_t) & (bins_t < tmax_s)

        mag = mag.masked_fill(mask, val)
        phase = phase.masked_fill(mask, val)
        self.stft_data = mag * torch.exp(1j * phase)
        return self

    def mask_low_magnitudes(
        self, db_cutoff: typing.Union[torch.Tensor, np.ndarray, float], val: float = 0.0
    ):
        """Mask away magnitudes below a specified threshold, which
        can be different for every item in the batch.

        Parameters
        ----------
        db_cutoff : typing.Union[torch.Tensor, np.ndarray, float]
            Decibel value for which things below it will be masked away.
        val : float, optional
            Value to fill in for masked portions, by default 0.0

        Returns
        -------
        AudioSignal
            Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
            masked audio data.
        """
        mag = self.magnitude
        log_mag = self.log_magnitude()

        db_cutoff = util.ensure_tensor(db_cutoff, ndim=mag.ndim)
        mask = log_mag < db_cutoff
        mag = mag.masked_fill(mask, val)

        self.magnitude = mag
        return self

    def shift_phase(self, shift: typing.Union[torch.Tensor, np.ndarray, float]):
        """Shifts the phase by a constant value.

        Parameters
        ----------
        shift : typing.Union[torch.Tensor, np.ndarray, float]
            What to shift the phase by.

        Returns
        -------
        AudioSignal
            Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
            masked audio data.
        """
        shift = util.ensure_tensor(shift, ndim=self.phase.ndim)
        self.phase = self.phase + shift
        return self

    def corrupt_phase(self, scale: typing.Union[torch.Tensor, np.ndarray, float]):
        """Corrupts the phase randomly by some scaled value.

        Parameters
        ----------
        scale : typing.Union[torch.Tensor, np.ndarray, float]
            Standard deviation of noise to add to the phase.

        Returns
        -------
        AudioSignal
            Signal with ``stft_data`` manipulated. Apply ``.istft()`` to get the
            masked audio data.
        """
        scale = util.ensure_tensor(scale, ndim=self.phase.ndim)
        self.phase = self.phase + scale * torch.randn_like(self.phase)
        return self

    def preemphasis(self, coef: float = 0.85):
        """Applies pre-emphasis to audio signal.

        Parameters
        ----------
        coef : float, optional
            How much pre-emphasis to apply, lower values do less. 0 does nothing.
            by default 0.85

        Returns
        -------
        AudioSignal
            Pre-emphasized signal.
        """
        kernel = torch.tensor([1, -coef, 0]).view(1, 1, -1).to(self.device)
        x = self.audio_data.reshape(-1, 1, self.signal_length)
        x = torch.nn.functional.conv1d(x, kernel, padding=1)
        self.audio_data = x.reshape(*self.audio_data.shape)
        return self