Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,987 Bytes
b9d6819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
from functools import reduce
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.backends.cuda import sdp_kernel
from packaging import version
from .nn.layers import Snake1d
class ResidualBlock(nn.Module):
def __init__(self, main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return self.main(input) + self.skip(input)
class ResConvBlock(ResidualBlock):
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
super().__init__([
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
nn.GroupNorm(1, c_mid),
Snake1d(c_mid) if use_snake else nn.GELU(),
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
], skip)
class SelfAttention1d(nn.Module):
def __init__(self, c_in, n_head=1, dropout_rate=0.):
super().__init__()
assert c_in % n_head == 0
self.norm = nn.GroupNorm(1, c_in)
self.n_head = n_head
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
self.out_proj = nn.Conv1d(c_in, c_in, 1)
self.dropout = nn.Dropout(dropout_rate, inplace=True)
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
if not self.use_flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
# Use flash attention for A100 GPUs
self.sdp_kernel_config = (True, False, False)
else:
# Don't use flash attention for other GPUs
self.sdp_kernel_config = (False, True, True)
def forward(self, input):
n, c, s = input.shape
qkv = self.qkv_proj(self.norm(input))
qkv = qkv.view(
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
q, k, v = qkv.chunk(3, dim=1)
scale = k.shape[3]**-0.25
if self.use_flash:
with sdp_kernel(*self.sdp_kernel_config):
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
else:
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])
return input + self.dropout(self.out_proj(y))
class SkipBlock(nn.Module):
def __init__(self, *main):
super().__init__()
self.main = nn.Sequential(*main)
def forward(self, input):
return torch.cat([self.main(input), input], dim=1)
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.randn(
[out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
def expand_to_planes(input, shape):
return input[..., None].repeat([1, 1, shape[2]])
_kernels = {
'linear':
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
'cubic':
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
0.43359375, 0.11328125, -0.03515625, -0.01171875],
'lanczos3':
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
}
class Downsample1d(nn.Module):
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor(_kernels[kernel])
self.pad = kernel_1d.shape[0] // 2 - 1
self.register_buffer('kernel', kernel_1d)
self.channels_last = channels_last
def forward(self, x):
if self.channels_last:
x = x.permute(0, 2, 1)
x = F.pad(x, (self.pad,) * 2, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
x = F.conv1d(x, weight, stride=2)
if self.channels_last:
x = x.permute(0, 2, 1)
return x
class Upsample1d(nn.Module):
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor(_kernels[kernel]) * 2
self.pad = kernel_1d.shape[0] // 2 - 1
self.register_buffer('kernel', kernel_1d)
self.channels_last = channels_last
def forward(self, x):
if self.channels_last:
x = x.permute(0, 2, 1)
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
if self.channels_last:
x = x.permute(0, 2, 1)
return x
def Downsample1d_2(
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
) -> nn.Module:
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
return nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=factor * kernel_multiplier + 1,
stride=factor,
padding=factor * (kernel_multiplier // 2),
)
def Upsample1d_2(
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
) -> nn.Module:
if factor == 1:
return nn.Conv1d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
)
if use_nearest:
return nn.Sequential(
nn.Upsample(scale_factor=factor, mode="nearest"),
nn.Conv1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
padding=1,
),
)
else:
return nn.ConvTranspose1d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=factor * 2,
stride=factor,
padding=factor // 2 + factor % 2,
output_padding=factor % 2,
)
def zero_init(layer):
nn.init.zeros_(layer.weight)
if layer.bias is not None:
nn.init.zeros_(layer.bias)
return layer
def rms_norm(x, scale, eps):
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
return x * scale.to(x.dtype)
#rms_norm = torch.compile(rms_norm)
class AdaRMSNorm(nn.Module):
def __init__(self, features, cond_features, eps=1e-6):
super().__init__()
self.eps = eps
self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
def extra_repr(self):
return f"eps={self.eps},"
def forward(self, x, cond):
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
def normalize(x, eps=1e-4):
dim = list(range(1, x.ndim))
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
alpha = np.sqrt(n.numel() / x.numel())
return x / torch.add(eps, n, alpha=alpha)
class ForcedWNConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1):
super().__init__()
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))
def forward(self, x):
if self.training:
with torch.no_grad():
self.weight.copy_(normalize(self.weight))
fan_in = self.weight[0].numel()
w = normalize(self.weight) / math.sqrt(fan_in)
return F.conv1d(x, w, padding='same')
# Kernels
use_compile = True
def compile(function, *args, **kwargs):
if not use_compile:
return function
try:
return torch.compile(function, *args, **kwargs)
except RuntimeError:
return function
@compile
def linear_geglu(x, weight, bias=None):
x = x @ weight.mT
if bias is not None:
x = x + bias
x, gate = x.chunk(2, dim=-1)
return x * F.gelu(gate)
@compile
def rms_norm(x, scale, eps):
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
return x * scale.to(x.dtype)
# Layers
class LinearGEGLU(nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super().__init__(in_features, out_features * 2, bias=bias)
self.out_features = out_features
def forward(self, x):
return linear_geglu(x, self.weight, self.bias)
class RMSNorm(nn.Module):
def __init__(self, shape, fix_scale = False, eps=1e-6):
super().__init__()
self.eps = eps
if fix_scale:
self.register_buffer("scale", torch.ones(shape))
else:
self.scale = nn.Parameter(torch.ones(shape))
def extra_repr(self):
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
def forward(self, x):
return rms_norm(x, self.scale, self.eps)
# jit script make it 1.4x faster and save GPU memory
@torch.jit.script
def snake_beta(x, alpha, beta):
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
# try:
# snake_beta = torch.compile(snake_beta)
# except RuntimeError:
# pass
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
# License available in LICENSES/LICENSE_NVIDIA.txt
class SnakeBeta(nn.Module):
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale:
# log scale alphas initialized to zeros
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
else:
# linear scale alphas initialized to ones
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
# self.no_div_by_zero = 0.000000001
def forward(self, x):
alpha = self.alpha.unsqueeze(0).unsqueeze(-1)
# line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = snake_beta(x, alpha, beta)
return x |