File size: 9,316 Bytes
b9d6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from typing import Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.utils import weight_norm

from .layers import WNConv1d


class VectorQuantize(nn.Module):
    """

    Implementation of VQ similar to Karpathy's repo:

    https://github.com/karpathy/deep-vector-quantization

    Additionally uses following tricks from Improved VQGAN

    (https://arxiv.org/pdf/2110.04627.pdf):

        1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space

            for improved codebook usage

        2. l2-normalized codes: Converts euclidean distance to cosine similarity which

            improves training stability

    """

    def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
        super().__init__()
        self.codebook_size = codebook_size
        self.codebook_dim = codebook_dim

        self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
        self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
        self.codebook = nn.Embedding(codebook_size, codebook_dim)

    def forward(self, z):
        """Quantized the input tensor using a fixed codebook and returns

        the corresponding codebook vectors



        Parameters

        ----------

        z : Tensor[B x D x T]



        Returns

        -------

        Tensor[B x D x T]

            Quantized continuous representation of input

        Tensor[1]

            Commitment loss to train encoder to predict vectors closer to codebook

            entries

        Tensor[1]

            Codebook loss to update the codebook

        Tensor[B x T]

            Codebook indices (quantized discrete representation of input)

        Tensor[B x D x T]

            Projected latents (continuous representation of input before quantization)

        """

        # Factorized codes (ViT-VQGAN) Project input into low-dimensional space
        z_e = self.in_proj(z)  # z_e : (B x D x T)
        z_q, indices = self.decode_latents(z_e)

        commitment_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
        codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])

        z_q = (
            z_e + (z_q - z_e).detach()
        )  # noop in forward pass, straight-through gradient estimator in backward pass

        z_q = self.out_proj(z_q)

        return z_q, commitment_loss, codebook_loss, indices, z_e

    def embed_code(self, embed_id):
        return F.embedding(embed_id, self.codebook.weight)

    def decode_code(self, embed_id):
        return self.embed_code(embed_id).transpose(1, 2)

    def decode_latents(self, latents):
        encodings = rearrange(latents, "b d t -> (b t) d")
        codebook = self.codebook.weight  # codebook: (N x D)

        # L2 normalize encodings and codebook (ViT-VQGAN)
        encodings = F.normalize(encodings)
        codebook = F.normalize(codebook)

        # Compute euclidean distance with codebook
        dist = (
            encodings.pow(2).sum(1, keepdim=True)
            - 2 * encodings @ codebook.t()
            + codebook.pow(2).sum(1, keepdim=True).t()
        )
        indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
        z_q = self.decode_code(indices)
        return z_q, indices


class ResidualVectorQuantize(nn.Module):
    """

    Introduced in SoundStream: An end2end neural audio codec

    https://arxiv.org/abs/2107.03312

    """

    def __init__(

        self,

        input_dim: int = 512,

        n_codebooks: int = 9,

        codebook_size: int = 1024,

        codebook_dim: Union[int, list] = 8,

        quantizer_dropout: float = 0.0,

    ):
        super().__init__()
        if isinstance(codebook_dim, int):
            codebook_dim = [codebook_dim for _ in range(n_codebooks)]

        self.n_codebooks = n_codebooks
        self.codebook_dim = codebook_dim
        self.codebook_size = codebook_size

        self.quantizers = nn.ModuleList(
            [
                VectorQuantize(input_dim, codebook_size, codebook_dim[i])
                for i in range(n_codebooks)
            ]
        )
        self.quantizer_dropout = quantizer_dropout

    def forward(self, z, n_quantizers: int = None):
        """Quantized the input tensor using a fixed set of `n` codebooks and returns

        the corresponding codebook vectors

        Parameters

        ----------

        z : Tensor[B x D x T]

        n_quantizers : int, optional

            No. of quantizers to use

            (n_quantizers < self.n_codebooks ex: for quantizer dropout)

            Note: if `self.quantizer_dropout` is True, this argument is ignored

                when in training mode, and a random number of quantizers is used.

        Returns

        -------

        dict

            A dictionary with the following keys:



            "z" : Tensor[B x D x T]

                Quantized continuous representation of input

            "codes" : Tensor[B x N x T]

                Codebook indices for each codebook

                (quantized discrete representation of input)

            "latents" : Tensor[B x N*D x T]

                Projected latents (continuous representation of input before quantization)

            "vq/commitment_loss" : Tensor[1]

                Commitment loss to train encoder to predict vectors closer to codebook

                entries

            "vq/codebook_loss" : Tensor[1]

                Codebook loss to update the codebook

        """
        z_q = 0
        residual = z
        commitment_loss = 0
        codebook_loss = 0

        codebook_indices = []
        latents = []

        if n_quantizers is None:
            n_quantizers = self.n_codebooks
        if self.training:
            n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
            dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
            n_dropout = int(z.shape[0] * self.quantizer_dropout)
            n_quantizers[:n_dropout] = dropout[:n_dropout]
            n_quantizers = n_quantizers.to(z.device)

        for i, quantizer in enumerate(self.quantizers):
            if self.training is False and i >= n_quantizers:
                break

            z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
                residual
            )

            # Create mask to apply quantizer dropout
            mask = (
                torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
            )
            z_q = z_q + z_q_i * mask[:, None, None]
            residual = residual - z_q_i

            # Sum losses
            commitment_loss += (commitment_loss_i * mask).mean()
            codebook_loss += (codebook_loss_i * mask).mean()

            codebook_indices.append(indices_i)
            latents.append(z_e_i)

        codes = torch.stack(codebook_indices, dim=1)
        latents = torch.cat(latents, dim=1)

        return z_q, codes, latents, commitment_loss, codebook_loss

    def from_codes(self, codes: torch.Tensor):
        """Given the quantized codes, reconstruct the continuous representation

        Parameters

        ----------

        codes : Tensor[B x N x T]

            Quantized discrete representation of input

        Returns

        -------

        Tensor[B x D x T]

            Quantized continuous representation of input

        """
        z_q = 0.0
        z_p = []
        n_codebooks = codes.shape[1]
        for i in range(n_codebooks):
            z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
            z_p.append(z_p_i)

            z_q_i = self.quantizers[i].out_proj(z_p_i)
            z_q = z_q + z_q_i
        return z_q, torch.cat(z_p, dim=1), codes

    def from_latents(self, latents: torch.Tensor):
        """Given the unquantized latents, reconstruct the

        continuous representation after quantization.



        Parameters

        ----------

        latents : Tensor[B x N x T]

            Continuous representation of input after projection



        Returns

        -------

        Tensor[B x D x T]

            Quantized representation of full-projected space

        Tensor[B x D x T]

            Quantized representation of latent space

        """
        z_q = 0
        z_p = []
        codes = []
        dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])

        n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
            0
        ]
        for i in range(n_codebooks):
            j, k = dims[i], dims[i + 1]
            z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
            z_p.append(z_p_i)
            codes.append(codes_i)

            z_q_i = self.quantizers[i].out_proj(z_p_i)
            z_q = z_q + z_q_i

        return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)


if __name__ == "__main__":
    rvq = ResidualVectorQuantize(quantizer_dropout=True)
    x = torch.randn(16, 512, 80)
    y = rvq(x)
    print(y["latents"].shape)