Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from audiotools import AudioSignal | |
from audiotools import ml | |
from audiotools import STFTParams | |
from einops import rearrange | |
from torch.nn.utils import weight_norm | |
def WNConv1d(*args, **kwargs): | |
act = kwargs.pop("act", True) | |
conv = weight_norm(nn.Conv1d(*args, **kwargs)) | |
if not act: | |
return conv | |
return nn.Sequential(conv, nn.LeakyReLU(0.1)) | |
def WNConv2d(*args, **kwargs): | |
act = kwargs.pop("act", True) | |
conv = weight_norm(nn.Conv2d(*args, **kwargs)) | |
if not act: | |
return conv | |
return nn.Sequential(conv, nn.LeakyReLU(0.1)) | |
class MPD(nn.Module): | |
def __init__(self, period): | |
super().__init__() | |
self.period = period | |
self.convs = nn.ModuleList( | |
[ | |
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)), | |
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)), | |
] | |
) | |
self.conv_post = WNConv2d( | |
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False | |
) | |
def pad_to_period(self, x): | |
t = x.shape[-1] | |
x = F.pad(x, (0, self.period - t % self.period), mode="reflect") | |
return x | |
def forward(self, x): | |
fmap = [] | |
x = self.pad_to_period(x) | |
x = rearrange(x, "b c (l p) -> b c l p", p=self.period) | |
for layer in self.convs: | |
x = layer(x) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return fmap | |
class MSD(nn.Module): | |
def __init__(self, rate: int = 1, sample_rate: int = 44100): | |
super().__init__() | |
self.convs = nn.ModuleList( | |
[ | |
WNConv1d(1, 16, 15, 1, padding=7), | |
WNConv1d(16, 64, 41, 4, groups=4, padding=20), | |
WNConv1d(64, 256, 41, 4, groups=16, padding=20), | |
WNConv1d(256, 1024, 41, 4, groups=64, padding=20), | |
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20), | |
WNConv1d(1024, 1024, 5, 1, padding=2), | |
] | |
) | |
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False) | |
self.sample_rate = sample_rate | |
self.rate = rate | |
def forward(self, x): | |
x = AudioSignal(x, self.sample_rate) | |
x.resample(self.sample_rate // self.rate) | |
x = x.audio_data | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return fmap | |
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)] | |
class MRD(nn.Module): | |
def __init__( | |
self, | |
window_length: int, | |
hop_factor: float = 0.25, | |
sample_rate: int = 44100, | |
bands: list = BANDS, | |
): | |
"""Complex multi-band spectrogram discriminator. | |
Parameters | |
---------- | |
window_length : int | |
Window length of STFT. | |
hop_factor : float, optional | |
Hop factor of the STFT, defaults to ``0.25 * window_length``. | |
sample_rate : int, optional | |
Sampling rate of audio in Hz, by default 44100 | |
bands : list, optional | |
Bands to run discriminator over. | |
""" | |
super().__init__() | |
self.window_length = window_length | |
self.hop_factor = hop_factor | |
self.sample_rate = sample_rate | |
self.stft_params = STFTParams( | |
window_length=window_length, | |
hop_length=int(window_length * hop_factor), | |
match_stride=True, | |
) | |
n_fft = window_length // 2 + 1 | |
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
self.bands = bands | |
ch = 32 | |
convs = lambda: nn.ModuleList( | |
[ | |
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), | |
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)), | |
] | |
) | |
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False) | |
def spectrogram(self, x): | |
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params) | |
x = torch.view_as_real(x.stft()) | |
x = rearrange(x, "b 1 f t c -> (b 1) c t f") | |
# Split into bands | |
x_bands = [x[..., b[0] : b[1]] for b in self.bands] | |
return x_bands | |
def forward(self, x): | |
x_bands = self.spectrogram(x) | |
fmap = [] | |
x = [] | |
for band, stack in zip(x_bands, self.band_convs): | |
for layer in stack: | |
band = layer(band) | |
fmap.append(band) | |
x.append(band) | |
x = torch.cat(x, dim=-1) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return fmap | |
class Discriminator(ml.BaseModel): | |
def __init__( | |
self, | |
rates: list = [], | |
periods: list = [2, 3, 5, 7, 11], | |
fft_sizes: list = [2048, 1024, 512], | |
sample_rate: int = 44100, | |
bands: list = BANDS, | |
): | |
"""Discriminator that combines multiple discriminators. | |
Parameters | |
---------- | |
rates : list, optional | |
sampling rates (in Hz) to run MSD at, by default [] | |
If empty, MSD is not used. | |
periods : list, optional | |
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11] | |
fft_sizes : list, optional | |
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512] | |
sample_rate : int, optional | |
Sampling rate of audio in Hz, by default 44100 | |
bands : list, optional | |
Bands to run MRD at, by default `BANDS` | |
""" | |
super().__init__() | |
discs = [] | |
discs += [MPD(p) for p in periods] | |
discs += [MSD(r, sample_rate=sample_rate) for r in rates] | |
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes] | |
self.discriminators = nn.ModuleList(discs) | |
def preprocess(self, y): | |
# Remove DC offset | |
y = y - y.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
return y | |
def forward(self, x): | |
x = self.preprocess(x) | |
fmaps = [d(x) for d in self.discriminators] | |
return fmaps | |
if __name__ == "__main__": | |
disc = Discriminator() | |
x = torch.zeros(1, 1, 44100) | |
results = disc(x) | |
for i, result in enumerate(results): | |
print(f"disc{i}") | |
for i, r in enumerate(result): | |
print(r.shape, r.mean(), r.min(), r.max()) | |
print() | |