Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import random | |
import numpy as np | |
import gradio as gr | |
import soundfile as sf | |
from transformers import T5Tokenizer, T5EncoderModel | |
from diffusers import DDIMScheduler | |
from src.models.conditioners import MaskDiT | |
from src.modules.autoencoder_wrapper import Autoencoder | |
from src.inference import inference | |
from src.utils import load_yaml_with_includes | |
# Load model and configs | |
def load_models(config_name, ckpt_path, vae_path, device): | |
params = load_yaml_with_includes(config_name) | |
# Load codec model | |
autoencoder = Autoencoder(ckpt_path=vae_path, | |
model_type=params['autoencoder']['name'], | |
quantization_first=params['autoencoder']['q_first']).to(device) | |
autoencoder.eval() | |
# Load text encoder | |
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model']) | |
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device) | |
text_encoder.eval() | |
# Load main U-Net model | |
unet = MaskDiT(**params['model']).to(device) | |
unet.load_state_dict(torch.load(ckpt_path)['model']) | |
unet.eval() | |
# Load noise scheduler | |
noise_scheduler = DDIMScheduler(**params['diff']) | |
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params | |
MAX_SEED = np.iinfo(np.int32).max | |
# Model and config paths | |
config_name = 'ckpts/ezaudio-xl.yml' | |
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt' | |
vae_path = 'ckpts/vae/1m.pt' | |
save_path = 'output/' | |
os.makedirs(save_path, exist_ok=True) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path, | |
device) | |
latents = torch.randn((1, 128, 128), device=device) | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device) | |
_ = noise_scheduler.add_noise(latents, noise, timesteps) | |
# Inference function | |
def generate_audio(text, length, | |
guidance_scale, guidance_rescale, ddim_steps, eta, | |
random_seed, randomize_seed): | |
neg_text = None | |
length = length * params['autoencoder']['latent_sr'] | |
if randomize_seed: | |
random_seed = random.randint(0, MAX_SEED) | |
pred = inference(autoencoder, unet, None, None, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text, neg_text, | |
length, | |
guidance_scale, guidance_rescale, | |
ddim_steps, eta, random_seed, | |
device) | |
pred = pred.cpu().numpy().squeeze(0).squeeze(0) | |
# output_file = f"{save_path}/{text}.wav" | |
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr']) | |
return params['autoencoder']['sr'], pred | |
# Gradio Interface | |
def gradio_interface(): | |
# Input components | |
text_input = gr.Textbox(label="Text Prompt", value="the sound of dog barking") | |
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)") | |
# Advanced settings | |
guidance_scale_input = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5, label="Guidance Scale") | |
guidance_rescale_input = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale") | |
ddim_steps_input = gr.Slider(minimum=25, maximum=200, step=5, value=100, label="DDIM Steps") | |
eta_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Eta") | |
random_seed_input = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0,) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
# Output component | |
output_audio = gr.Audio(label="Converted Audio", type="numpy") | |
# Interface | |
gr.Interface( | |
fn=generate_audio, | |
inputs=[text_input, length_input, guidance_scale_input, guidance_rescale_input, ddim_steps_input, eta_input, | |
random_seed_input, randomize_seed], | |
outputs=output_audio, | |
title="EzAudio Text-to-Audio Generator", | |
description="Generate audio from text using a diffusion model. Adjust advanced settings for more control.", | |
allow_flagging="never" | |
).launch() | |
if __name__ == "__main__": | |
gradio_interface() | |