EzAudio / src /models /blocks.py
OpenSound's picture
Upload 84 files
b9d6819 verified
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .utils.attention import Attention, JointAttention
from .utils.modules import unpatchify, FeedForward
from .utils.modules import film_modulate
class AdaLN(nn.Module):
def __init__(self, dim, ada_mode='ada', r=None, alpha=None):
super().__init__()
self.ada_mode = ada_mode
self.scale_shift_table = None
if ada_mode == 'ada':
# move nn.silu outside
self.time_ada = nn.Linear(dim, 6 * dim, bias=True)
elif ada_mode == 'ada_single':
# adaln used in pixel-art alpha
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
elif ada_mode in ['ada_lora', 'ada_lora_bias']:
self.lora_a = nn.Linear(dim, r * 6, bias=False)
self.lora_b = nn.Linear(r * 6, dim * 6, bias=False)
self.scaling = alpha / r
if ada_mode == 'ada_lora_bias':
# take bias out for consistency
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim))
else:
raise NotImplementedError
def forward(self, time_token=None, time_ada=None):
if self.ada_mode == 'ada':
assert time_ada is None
B = time_token.shape[0]
time_ada = self.time_ada(time_token).reshape(B, 6, -1)
elif self.ada_mode == 'ada_single':
B = time_ada.shape[0]
time_ada = time_ada.reshape(B, 6, -1)
time_ada = self.scale_shift_table[None] + time_ada
elif self.ada_mode in ['ada_lora', 'ada_lora_bias']:
B = time_ada.shape[0]
time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling
time_ada = time_ada + time_ada_lora
time_ada = time_ada.reshape(B, 6, -1)
if self.scale_shift_table is not None:
time_ada = self.scale_shift_table[None] + time_ada
else:
raise NotImplementedError
return time_ada
class DiTBlock(nn.Module):
"""
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(self, dim, context_dim=None,
num_heads=8, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, qk_norm=None,
act_layer='gelu', norm_layer=nn.LayerNorm,
time_fusion='none',
ada_lora_rank=None, ada_lora_alpha=None,
skip=False, skip_norm=False,
rope_mode='none',
context_norm=False,
use_checkpoint=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode=rope_mode)
if context_dim is not None:
self.use_context = True
self.cross_attn = Attention(dim=dim,
num_heads=num_heads,
context_dim=context_dim,
qkv_bias=qkv_bias, qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode='none')
self.norm2 = norm_layer(dim)
if context_norm:
self.norm_context = norm_layer(context_dim)
else:
self.norm_context = nn.Identity()
else:
self.use_context = False
self.norm3 = norm_layer(dim)
self.mlp = FeedForward(dim=dim, mult=mlp_ratio,
activation_fn=act_layer, dropout=0)
self.use_adanorm = True if time_fusion != 'token' else False
if self.use_adanorm:
self.adaln = AdaLN(dim, ada_mode=time_fusion,
r=ada_lora_rank, alpha=ada_lora_alpha)
if skip:
self.skip_norm = norm_layer(2 * dim) if skip_norm else nn.Identity()
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
self.use_checkpoint = use_checkpoint
def forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
if self.use_checkpoint:
return checkpoint(self._forward, x,
time_token, time_ada, skip, context,
x_mask, context_mask, extras,
use_reentrant=False)
else:
return self._forward(x,
time_token, time_ada, skip, context,
x_mask, context_mask, extras)
def _forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
B, T, C = x.shape
if self.skip_linear is not None:
assert skip is not None
cat = torch.cat([x, skip], dim=-1)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
if self.use_adanorm:
time_ada = self.adaln(time_token, time_ada)
(shift_msa, scale_msa, gate_msa,
shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1)
# self attention
if self.use_adanorm:
x_norm = film_modulate(self.norm1(x), shift=shift_msa,
scale=scale_msa)
x = x + (1 - gate_msa) * self.attn(x_norm, context=None,
context_mask=x_mask,
extras=extras)
else:
x = x + self.attn(self.norm1(x), context=None, context_mask=x_mask,
extras=extras)
# cross attention
if self.use_context:
assert context is not None
x = x + self.cross_attn(x=self.norm2(x),
context=self.norm_context(context),
context_mask=context_mask, extras=extras)
# mlp
if self.use_adanorm:
x_norm = film_modulate(self.norm3(x), shift=shift_mlp, scale=scale_mlp)
x = x + (1 - gate_mlp) * self.mlp(x_norm)
else:
x = x + self.mlp(self.norm3(x))
return x
class JointDiTBlock(nn.Module):
"""
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(self, dim, context_dim=None,
num_heads=8, mlp_ratio=4.,
qkv_bias=False, qk_scale=None, qk_norm=None,
act_layer='gelu', norm_layer=nn.LayerNorm,
time_fusion='none',
ada_lora_rank=None, ada_lora_alpha=None,
skip=(False, False),
rope_mode=False,
context_norm=False,
use_checkpoint=False,):
super().__init__()
# no cross attention
assert context_dim is None
self.attn_norm_x = norm_layer(dim)
self.attn_norm_c = norm_layer(dim)
self.attn = JointAttention(dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale,
qk_norm=qk_norm,
rope_mode=rope_mode)
self.ffn_norm_x = norm_layer(dim)
self.ffn_norm_c = norm_layer(dim)
self.mlp_x = FeedForward(dim=dim, mult=mlp_ratio,
activation_fn=act_layer, dropout=0)
self.mlp_c = FeedForward(dim=dim, mult=mlp_ratio,
activation_fn=act_layer, dropout=0)
# Zero-out the shift table
self.use_adanorm = True if time_fusion != 'token' else False
if self.use_adanorm:
self.adaln = AdaLN(dim, ada_mode=time_fusion,
r=ada_lora_rank, alpha=ada_lora_alpha)
if skip is False:
skip_x, skip_c = False, False
else:
skip_x, skip_c = skip
self.skip_linear_x = nn.Linear(2 * dim, dim) if skip_x else None
self.skip_linear_c = nn.Linear(2 * dim, dim) if skip_c else None
self.use_checkpoint = use_checkpoint
def forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
if self.use_checkpoint:
return checkpoint(self._forward, x,
time_token, time_ada, skip,
context, x_mask, context_mask, extras,
use_reentrant=False)
else:
return self._forward(x,
time_token, time_ada, skip,
context, x_mask, context_mask, extras)
def _forward(self, x, time_token=None, time_ada=None,
skip=None, context=None,
x_mask=None, context_mask=None, extras=None):
assert context is None and context_mask is None
context, x = x[:, :extras, :], x[:, extras:, :]
context_mask, x_mask = x_mask[:, :extras], x_mask[:, extras:]
if skip is not None:
skip_c, skip_x = skip[:, :extras, :], skip[:, extras:, :]
B, T, C = x.shape
if self.skip_linear_x is not None:
x = self.skip_linear_x(torch.cat([x, skip_x], dim=-1))
if self.skip_linear_c is not None:
context = self.skip_linear_c(torch.cat([context, skip_c], dim=-1))
if self.use_adanorm:
time_ada = self.adaln(time_token, time_ada)
(shift_msa, scale_msa, gate_msa,
shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1)
# self attention
x_norm = self.attn_norm_x(x)
c_norm = self.attn_norm_c(context)
if self.use_adanorm:
x_norm = film_modulate(x_norm, shift=shift_msa, scale=scale_msa)
x_out, c_out = self.attn(x_norm, context=c_norm,
x_mask=x_mask, context_mask=context_mask,
extras=extras)
if self.use_adanorm:
x = x + (1 - gate_msa) * x_out
else:
x = x + x_out
context = context + c_out
# mlp
if self.use_adanorm:
x_norm = film_modulate(self.ffn_norm_x(x),
shift=shift_mlp, scale=scale_mlp)
x = x + (1 - gate_mlp) * self.mlp_x(x_norm)
else:
x = x + self.mlp_x(self.ffn_norm_x(x))
c_norm = self.ffn_norm_c(context)
context = context + self.mlp_c(c_norm)
return torch.cat((context, x), dim=1)
class FinalBlock(nn.Module):
def __init__(self, embed_dim, patch_size, in_chans,
img_size,
input_type='2d',
norm_layer=nn.LayerNorm,
use_conv=True,
use_adanorm=True):
super().__init__()
self.in_chans = in_chans
self.img_size = img_size
self.input_type = input_type
self.norm = norm_layer(embed_dim)
if use_adanorm:
self.use_adanorm = True
else:
self.use_adanorm = False
if input_type == '2d':
self.patch_dim = patch_size ** 2 * in_chans
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
if use_conv:
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans,
3, padding=1)
else:
self.final_layer = nn.Identity()
elif input_type == '1d':
self.patch_dim = patch_size * in_chans
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True)
if use_conv:
self.final_layer = nn.Conv1d(self.in_chans, self.in_chans,
3, padding=1)
else:
self.final_layer = nn.Identity()
def forward(self, x, time_ada=None, extras=0):
B, T, C = x.shape
x = x[:, extras:, :]
# only handle generation target
if self.use_adanorm:
shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1)
x = film_modulate(self.norm(x), shift, scale)
else:
x = self.norm(x)
x = self.linear(x)
x = unpatchify(x, self.in_chans, self.input_type, self.img_size)
x = self.final_layer(x)
return x