File size: 11,013 Bytes
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import random
import time
from math import ceil
import warnings
import numpy as np
# from asteroid.losses.sdr import SingleSrcNegSDR
import torch
import pytorch_lightning as pl
from torch_ema import ExponentialMovingAverage
import torch.nn.functional as F
from geco import sampling
from geco.sdes import SDERegistry
from fastgeco.backbones import BackboneRegistry
from geco.util.inference import evaluate_model2
from geco.util.other import pad_spec
import numpy as np
import matplotlib.pyplot as plt



class ScoreModel(pl.LightningModule):
    @staticmethod
    def add_argparse_args(parser):
        parser.add_argument("--lr", type=float, default=1e-5, help="The learning rate (1e-4 by default)")
        parser.add_argument("--ema_decay", type=float, default=0.999, help="The parameter EMA decay constant (0.999 by default)")
        parser.add_argument("--t_eps", type=float, default=0.03, help="The minimum time (3e-2 by default)")
        parser.add_argument("--num_eval_files", type=int, default=20, help="Number of files for speech enhancement performance evaluation during training. Pass 0 to turn off (no checkpoints based on evaluation metrics will be generated).")
        parser.add_argument("--loss_type", type=str, default="mse", help="The type of loss function to use.")
        parser.add_argument("--loss_abs_exponent", type=float, default=0.5,  help="magnitude transformation in the loss term")
        parser.add_argument("--output_scale", type=str, choices=('sigma', 'time'), default= 'time',  help="backbone model scale before last output layer")
        return parser

    def __init__(
        self, backbone, sde, lr=1e-4, ema_decay=0.999, t_eps=3e-2, loss_abs_exponent=0.5, 
        num_eval_files=20, loss_type='mse', data_module_cls=None, output_scale='time', inference_N=1,
        inference_start=0.5, **kwargs
    ):
        """
        Create a new ScoreModel.

        Args:
            backbone: Backbone DNN that serves as a score-based model.
            sde: The SDE that defines the diffusion process.
            lr: The learning rate of the optimizer. (1e-4 by default).
            ema_decay: The decay constant of the parameter EMA (0.999 by default).
            t_eps: The minimum time to practically run for to avoid issues very close to zero (1e-5 by default).
            loss_type: The type of loss to use (wrt. noise z/std). Options are 'mse' (default), 'mae'
        """
        super().__init__()
        # Initialize Backbone DNN
        dnn_cls = BackboneRegistry.get_by_name(backbone)
        self.dnn = dnn_cls(**kwargs)
        # Initialize SDE
        sde_cls = SDERegistry.get_by_name(sde)
        self.sde = sde_cls(**kwargs)
        # Store hyperparams and save them
        self.lr = lr
        self.ema_decay = ema_decay
        self.ema = ExponentialMovingAverage(self.parameters(), decay=self.ema_decay)
        self._error_loading_ema = False
        self.t_eps = t_eps
        self.loss_type = loss_type
        self.num_eval_files = num_eval_files
        self.loss_abs_exponent = loss_abs_exponent
        self.output_scale = output_scale
        self.save_hyperparameters(ignore=['no_wandb'])
        self.data_module = data_module_cls(**kwargs, gpu=kwargs.get('gpus', 0) > 0)
        self.inference_N = inference_N
        self.inference_start = inference_start

        # self.si_snr = SingleSrcNegSDR("sisdr", reduction='mean', zero_mean=False)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
        return optimizer

    def optimizer_step(self, *args, **kwargs):
        # Method overridden so that the EMA params are updated after each optimizer step
        super().optimizer_step(*args, **kwargs)
        self.ema.update(self.parameters())

    # on_load_checkpoint / on_save_checkpoint needed for EMA storing/loading
    def on_load_checkpoint(self, checkpoint):
        ema = checkpoint.get('ema', None)
        if ema is not None:
            self.ema.load_state_dict(checkpoint['ema'])
        else:
            self._error_loading_ema = True
            warnings.warn("EMA state_dict not found in checkpoint!")

    def on_save_checkpoint(self, checkpoint):
        checkpoint['ema'] = self.ema.state_dict()

    def train(self, mode, no_ema=False):
        res = super().train(mode)  # call the standard `train` method with the given mode
        if not self._error_loading_ema:
            if mode == False and not no_ema:
                # eval
                self.ema.store(self.parameters())        # store current params in EMA
                self.ema.copy_to(self.parameters())      # copy EMA parameters over current params for evaluation
            else:
                # train
                if self.ema.collected_params is not None:
                    self.ema.restore(self.parameters())  # restore the EMA weights (if stored)
        return res

    def eval(self, no_ema=False):
        return self.train(False, no_ema=no_ema)
    
    
    def sisnr(self, est, ref, eps = 1e-8):
        est = est - torch.mean(est, dim = -1, keepdim = True)
        ref = ref - torch.mean(ref, dim = -1, keepdim = True)
        est_p = (torch.sum(est * ref, dim = -1, keepdim = True) * ref) / torch.sum(ref * ref, dim = -1, keepdim = True)
        est_v = est - est_p
        est_sisnr = 10 * torch.log10((torch.sum(est_p * est_p, dim = -1, keepdim = True) + eps) / (torch.sum(est_v * est_v, dim = -1, keepdim = True) + eps))
        return -est_sisnr

    
    def _loss(self, wav_x_tm1, wav_gt):  
        if self.loss_type == 'default':
            min_leng = min(wav_x_tm1.shape[-1], wav_gt.shape[-1])
            wav_x_tm1 = wav_x_tm1.squeeze(1)[:,:min_leng]
            wav_gt = wav_gt.squeeze(1)[:,:min_leng]
            loss = torch.mean(self.sisnr(wav_x_tm1, wav_gt))
        else:
            raise RuntimeError(f'{self.loss_type} loss not defined')

        return loss



    def euler_step(self, X, X_t, Y, M, t, dt):
        f, g = self.sde.sde(X_t, t, Y)
        vec_t = torch.ones(Y.shape[0], device=Y.device) * t 
        mean_x_tm1 = X_t - (f - g**2*self.forward(X_t, vec_t, Y, M, vec_t[:,None,None,None]))*dt 
        z = torch.randn_like(X) 
        X_t = mean_x_tm1 + z*g*torch.sqrt(dt)
        
        return X_t


    def training_step(self, batch, batch_idx):
        X, Y, M = batch

        reverse_start_time = random.uniform(self.t_rsp_min, self.t_rsp_max)
        N_reverse = random.randint(self.N_min, self.N_max)
        
        if self.stop_iteration_random == "random":
            stop_iteration = random.randint(0, N_reverse-1)
        elif self.stop_iteration_random == "last":
            #Used in publication. This means that only the last step is used for updating weights.
            stop_iteration = N_reverse-1
        else:
            raise RuntimeError(f'{self.stop_iteration_random} not defined')
        
        timesteps = torch.linspace(reverse_start_time, self.t_eps, N_reverse, device=Y.device)
        
        #prior sampling starting from reverse_start_time 
        std = self.sde._std(reverse_start_time*torch.ones((Y.shape[0],), device=Y.device))
        z = torch.randn_like(Y)
        X_t = Y + z * std[:, None, None, None]
        
        #reverse steps by Euler Maruyama
        for i in range(len(timesteps)):
            t = timesteps[i]
            if i != len(timesteps) - 1:
                dt = t - timesteps[i+1]
            else:
                dt = timesteps[-1]

            if i != stop_iteration:                
                with torch.no_grad():
                    #take Euler step here
                    X_t = self.euler_step(X, X_t, Y, M, t, dt)
            else:
                #take a Euler step and compute loss
                f, g = self.sde.sde(X_t, t, Y)
                vec_t = torch.ones(Y.shape[0], device=Y.device) * t 
                score = self.forward(X_t, vec_t, Y, M, vec_t[:,None,None,None])
                mean_x_tm1 = X_t - (f - g**2*score)*dt #mean of x t minus 1 = mu(x_{t-1})
                mean_gt, _ = self.sde.marginal_prob(X, torch.ones(Y.shape[0], device=Y.device) * (t-dt), Y)
                
                wav_gt = self.to_audio(mean_gt.squeeze())
                wav_x_tm1 = self.to_audio(mean_x_tm1.squeeze())
                loss = self._loss(wav_x_tm1, wav_gt)
                break

        self.log('train_loss', loss, on_step=True, on_epoch=True)
        return loss


    def validation_step(self, batch, batch_idx):
        # Evaluate speech enhancement performance, compute loss only for a few val data
        if batch_idx == 0 and self.num_eval_files != 0:
            pesq, si_sdr, estoi, loss = evaluate_model2(self, self.num_eval_files, self.inference_N, inference_start=self.inference_start)
            self.log('pesq', pesq, on_step=False, on_epoch=True)
            self.log('si_sdr', si_sdr, on_step=False, on_epoch=True)
            self.log('estoi', estoi, on_step=False, on_epoch=True)
            self.log('valid_loss', loss, on_step=False, on_epoch=True)
            return loss


    def forward(self, x, t, y, m, divide_scale):
        # Concatenate y as an extra channel
        dnn_input = torch.cat([x, y, m], dim=1)
        
        # the minus is most likely unimportant here - taken from Song's repo
        score = -self.dnn(dnn_input, t, divide_scale)
        return score

    def to(self, *args, **kwargs):
        """Override PyTorch .to() to also transfer the EMA of the model weights"""
        self.ema.to(*args, **kwargs)
        return super().to(*args, **kwargs)


    def train_dataloader(self):
        return self.data_module.train_dataloader()

    def val_dataloader(self):
        return self.data_module.val_dataloader()

    def test_dataloader(self):
        return self.data_module.test_dataloader()

    def setup(self, stage=None):
        return self.data_module.setup(stage=stage)

    def to_audio(self, spec, length=None):
        return self._istft(self._backward_transform(spec), length)

    def _forward_transform(self, spec):
        return self.data_module.spec_fwd(spec)

    def _backward_transform(self, spec):
        return self.data_module.spec_back(spec)

    def _stft(self, sig):
        return self.data_module.stft(sig)

    def _istft(self, spec, length=None):
        return self.data_module.istft(spec, length)

                
    def add_para(self, N_min=1, N_max=1, t_rsp_min=0.5, t_rsp_max=0.5, batch_size=64, loss_type='default', lr=5e-5, stop_iteration_random='last', inference_N=1, inference_start=0.5):
        self.t_rsp_min = t_rsp_min
        self.t_rsp_max = t_rsp_max
        self.N_min = N_min
        self.N_max = N_max
        self.data_module.batch_size = batch_size 
        self.data_module.num_workers = 4
        self.data_module.gpu = True
        self.loss_type = loss_type
        self.lr = lr
        self.stop_iteration_random = stop_iteration_random
        self.inference_N = inference_N
        self.inference_start = inference_start