anonymous9a7b
commited on
Commit
·
f032e68
1
Parent(s):
6cf6784
- app.py +194 -0
- config/SoloAudio.yaml +26 -0
- demo/0_mix.wav +0 -0
- demo/soloaudio.webp +0 -0
- model/attention.py +146 -0
- model/rotary.py +91 -0
- model/udit.py +491 -0
- pretrained_models/config.json +122 -0
- vae_modules/.DS_Store +0 -0
- vae_modules/autoencoder_wrapper.py +83 -0
- vae_modules/clap_wrapper.py +0 -0
- vae_modules/dac/__init__.py +16 -0
- vae_modules/dac/__main__.py +36 -0
- vae_modules/dac/compare/__init__.py +0 -0
- vae_modules/dac/compare/encodec.py +54 -0
- vae_modules/dac/model/__init__.py +4 -0
- vae_modules/dac/model/base.py +294 -0
- vae_modules/dac/model/dac.py +364 -0
- vae_modules/dac/model/discriminator.py +228 -0
- vae_modules/dac/nn/__init__.py +3 -0
- vae_modules/dac/nn/layers.py +33 -0
- vae_modules/dac/nn/loss.py +368 -0
- vae_modules/dac/nn/quantize.py +262 -0
- vae_modules/dac/utils/__init__.py +122 -0
- vae_modules/dac/utils/decode.py +95 -0
- vae_modules/dac/utils/encode.py +94 -0
- vae_modules/stable_vae/__init__.py +40 -0
- vae_modules/stable_vae/models/autoencoders.py +683 -0
- vae_modules/stable_vae/models/blocks.py +359 -0
- vae_modules/stable_vae/models/bottleneck.py +346 -0
- vae_modules/stable_vae/models/factory.py +153 -0
- vae_modules/stable_vae/models/nn/__init__.py +3 -0
- vae_modules/stable_vae/models/nn/layers.py +33 -0
- vae_modules/stable_vae/models/nn/loss.py +368 -0
- vae_modules/stable_vae/models/nn/quantize.py +262 -0
- vae_modules/stable_vae/models/pretransforms.py +258 -0
- vae_modules/stable_vae/models/utils.py +51 -0
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import yaml
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
from diffusers import DDIMScheduler
|
7 |
+
from transformers import AutoProcessor, ClapModel
|
8 |
+
from model.udit import UDiT
|
9 |
+
from vae_modules.autoencoder_wrapper import Autoencoder
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
diffusion_config = './config/SoloAudio.yaml'
|
13 |
+
diffusion_ckpt = './pretrained_models/soloaudio_v2.pt'
|
14 |
+
autoencoder_path = './pretrained_models/audio-vae.pt'
|
15 |
+
uncond_path = './pretrained_models/uncond.npz'
|
16 |
+
sample_rate = 24000
|
17 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
+
|
19 |
+
with open(diffusion_config, 'r') as fp:
|
20 |
+
diff_config = yaml.safe_load(fp)
|
21 |
+
|
22 |
+
v_prediction = diff_config["ddim"]["v_prediction"]
|
23 |
+
|
24 |
+
clapmodel = ClapModel.from_pretrained("laion/larger_clap_general").to(device)
|
25 |
+
processor = AutoProcessor.from_pretrained('laion/larger_clap_general')
|
26 |
+
autoencoder = Autoencoder(autoencoder_path, 'stable_vae', quantization_first=True)
|
27 |
+
autoencoder.eval()
|
28 |
+
autoencoder.to(device)
|
29 |
+
unet = UDiT(
|
30 |
+
**diff_config['diffwrap']['UDiT']
|
31 |
+
).to(device)
|
32 |
+
unet.load_state_dict(torch.load(diffusion_ckpt)['model'])
|
33 |
+
unet.eval()
|
34 |
+
|
35 |
+
if v_prediction:
|
36 |
+
print('v prediction')
|
37 |
+
scheduler = DDIMScheduler(**diff_config["ddim"]['diffusers'])
|
38 |
+
else:
|
39 |
+
print('noise prediction')
|
40 |
+
scheduler = DDIMScheduler(**diff_config["ddim"]['diffusers'])
|
41 |
+
|
42 |
+
# these steps reset dtype of noise_scheduler params
|
43 |
+
latents = torch.randn((1, 128, 128),
|
44 |
+
device=device)
|
45 |
+
noise = torch.randn(latents.shape).to(latents.device)
|
46 |
+
timesteps = torch.randint(0, scheduler.config.num_train_timesteps,
|
47 |
+
(noise.shape[0],),
|
48 |
+
device=latents.device).long()
|
49 |
+
_ = scheduler.add_noise(latents, noise, timesteps)
|
50 |
+
|
51 |
+
|
52 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
53 |
+
"""
|
54 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
55 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
56 |
+
"""
|
57 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
58 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
59 |
+
# rescale the results from guidance (fixes overexposure)
|
60 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
61 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
62 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
63 |
+
return noise_cfg
|
64 |
+
|
65 |
+
@spaces.GPU
|
66 |
+
def sample_diffusion(mixture, timbre, ddim_steps=50, eta=0, seed=2023, guidance_scale=False, guidance_rescale=0.0,):
|
67 |
+
with torch.no_grad():
|
68 |
+
scheduler.set_timesteps(ddim_steps)
|
69 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
70 |
+
# init noise
|
71 |
+
noise = torch.randn(mixture.shape, generator=generator, device=device)
|
72 |
+
pred = noise
|
73 |
+
|
74 |
+
for t in scheduler.timesteps:
|
75 |
+
pred = scheduler.scale_model_input(pred, t)
|
76 |
+
if guidance_scale:
|
77 |
+
uncond = torch.tensor(np.load(uncond_path)['arr_0']).unsqueeze(0).to(device)
|
78 |
+
pred_combined = torch.cat([pred, pred], dim=0)
|
79 |
+
mixture_combined = torch.cat([mixture, mixture], dim=0)
|
80 |
+
timbre_combined = torch.cat([timbre, uncond], dim=0)
|
81 |
+
output_combined = unet(x=pred_combined, timesteps=t, mixture=mixture_combined, timbre=timbre_combined)
|
82 |
+
output_pos, output_neg = torch.chunk(output_combined, 2, dim=0)
|
83 |
+
|
84 |
+
model_output = output_neg + guidance_scale * (output_pos - output_neg)
|
85 |
+
if guidance_rescale > 0.0:
|
86 |
+
# avoid overexposed
|
87 |
+
model_output = rescale_noise_cfg(model_output, output_pos,
|
88 |
+
guidance_rescale=guidance_rescale)
|
89 |
+
else:
|
90 |
+
model_output = unet(x=pred, timesteps=t, mixture=mixture, timbre=timbre)
|
91 |
+
pred = scheduler.step(model_output=model_output, timestep=t, sample=pred,
|
92 |
+
eta=eta, generator=generator).prev_sample
|
93 |
+
|
94 |
+
pred = autoencoder(embedding=pred).squeeze(1)
|
95 |
+
|
96 |
+
return pred
|
97 |
+
|
98 |
+
@spaces.GPU
|
99 |
+
def tse(gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale):
|
100 |
+
with torch.no_grad():
|
101 |
+
mixture, _ = librosa.load(gt_file_input, sr=sample_rate)
|
102 |
+
# Check the length of the audio in samples
|
103 |
+
current_length = len(mixture)
|
104 |
+
target_length = sample_rate * 10
|
105 |
+
# Cut or pad the audio to match the target length
|
106 |
+
if current_length > target_length:
|
107 |
+
# Trim the audio if it's longer than the target length
|
108 |
+
mixture = mixture[:target_length]
|
109 |
+
elif current_length < target_length:
|
110 |
+
# Pad the audio with zeros if it's shorter than the target length
|
111 |
+
padding = target_length - current_length
|
112 |
+
mixture = np.pad(mixture, (0, padding), mode='constant')
|
113 |
+
mixture = torch.tensor(mixture).unsqueeze(0).to(device)
|
114 |
+
mixture = autoencoder(audio=mixture.unsqueeze(1))
|
115 |
+
|
116 |
+
text_inputs = processor(
|
117 |
+
text=[text_input],
|
118 |
+
max_length=10, # Fixed length for text
|
119 |
+
padding='max_length', # Pad text to max length
|
120 |
+
truncation=True, # Truncate text if it's longer than max length
|
121 |
+
return_tensors="pt"
|
122 |
+
)
|
123 |
+
inputs = {
|
124 |
+
"input_ids": text_inputs["input_ids"][0].unsqueeze(0), # Text input IDs
|
125 |
+
"attention_mask": text_inputs["attention_mask"][0].unsqueeze(0), # Attention mask for text
|
126 |
+
}
|
127 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
128 |
+
timbre = clapmodel.get_text_features(**inputs)
|
129 |
+
|
130 |
+
|
131 |
+
pred = sample_diffusion(mixture, timbre, num_infer_steps, eta, seed, guidance_scale, guidance_rescale)
|
132 |
+
return sample_rate, pred.squeeze().cpu().numpy()
|
133 |
+
|
134 |
+
|
135 |
+
# CSS styling (optional)
|
136 |
+
css = """
|
137 |
+
#col-container {
|
138 |
+
margin: 0 auto;
|
139 |
+
max-width: 1280px;
|
140 |
+
}
|
141 |
+
"""
|
142 |
+
|
143 |
+
# Gradio Blocks layout
|
144 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
145 |
+
with gr.Column(elem_id="col-container"):
|
146 |
+
gr.Markdown("""
|
147 |
+
# SoloAudio: Target Sound Extraction with Language-oriented Audio Diffusion Transformer.
|
148 |
+
Adjust advanced settings for more control. This space only supports a 10-second audio input now.
|
149 |
+
|
150 |
+
Learn more about 🟣**SoloAudio** on the [SoloAudio Homepage](https://wanghelin1997.github.io/SoloAudio-Demo/).
|
151 |
+
""")
|
152 |
+
|
153 |
+
|
154 |
+
with gr.Tab("Target Sound Extraction"):
|
155 |
+
# Basic Input: Text prompt
|
156 |
+
with gr.Row():
|
157 |
+
gt_file_input = gr.Audio(label="Upload Audio to Extract", type="filepath", value="demo/0_mix.wav")
|
158 |
+
text_input = gr.Textbox(
|
159 |
+
label="Text Prompt",
|
160 |
+
show_label=True,
|
161 |
+
max_lines=2,
|
162 |
+
placeholder="Enter your prompt",
|
163 |
+
container=True,
|
164 |
+
value="The sound of gunshot",
|
165 |
+
scale=4
|
166 |
+
)
|
167 |
+
# Run button
|
168 |
+
run_button = gr.Button("Extract", scale=1)
|
169 |
+
|
170 |
+
# Output Component
|
171 |
+
result = gr.Audio(label="Extracted Audio", type="numpy")
|
172 |
+
|
173 |
+
# Advanced settings in an Accordion
|
174 |
+
with gr.Accordion("Advanced Settings", open=False):
|
175 |
+
# Audio Length
|
176 |
+
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=3.0, label="Guidance Scale")
|
177 |
+
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0., label="Guidance Rescale")
|
178 |
+
num_infer_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
|
179 |
+
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Eta")
|
180 |
+
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
|
181 |
+
|
182 |
+
# Define the trigger and input-output linking for generation
|
183 |
+
run_button.click(
|
184 |
+
fn=tse,
|
185 |
+
inputs=[gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale],
|
186 |
+
outputs=[result]
|
187 |
+
)
|
188 |
+
text_input.submit(fn=tse,
|
189 |
+
inputs=[gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale],
|
190 |
+
outputs=[result]
|
191 |
+
)
|
192 |
+
|
193 |
+
# Launch the Gradio demo
|
194 |
+
demo.launch()
|
config/SoloAudio.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: 1.0
|
2 |
+
|
3 |
+
system: "udit_rotary_v_b_1000"
|
4 |
+
|
5 |
+
ddim:
|
6 |
+
v_prediction: true
|
7 |
+
diffusers:
|
8 |
+
num_train_timesteps: 1000
|
9 |
+
beta_schedule: 'scaled_linear'
|
10 |
+
beta_start: 0.00085
|
11 |
+
beta_end: 0.012
|
12 |
+
prediction_type: 'v_prediction'
|
13 |
+
rescale_betas_zero_snr: true
|
14 |
+
timestep_spacing: 'trailing'
|
15 |
+
clip_sample: false
|
16 |
+
|
17 |
+
diffwrap:
|
18 |
+
UDiT:
|
19 |
+
input_dim: 256
|
20 |
+
output_dim: 128
|
21 |
+
pos_method: 'none'
|
22 |
+
pos_length: 500
|
23 |
+
timbre_dim: 512
|
24 |
+
hidden_size: 768
|
25 |
+
depth: 12
|
26 |
+
num_heads: 12
|
demo/0_mix.wav
ADDED
Binary file (480 kB). View file
|
|
demo/soloaudio.webp
ADDED
model/attention.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torch.utils.checkpoint
|
5 |
+
import einops
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
from inspect import isfunction
|
8 |
+
from .rotary import RotaryEmbedding
|
9 |
+
|
10 |
+
|
11 |
+
if hasattr(nn.functional, 'scaled_dot_product_attention'):
|
12 |
+
ATTENTION_MODE = 'flash'
|
13 |
+
else:
|
14 |
+
ATTENTION_MODE = 'math'
|
15 |
+
print(f'attention mode is {ATTENTION_MODE}')
|
16 |
+
|
17 |
+
|
18 |
+
def add_mask(sim, mask):
|
19 |
+
b, ndim = sim.shape[0], mask.ndim
|
20 |
+
if ndim == 3:
|
21 |
+
mask = rearrange(mask, "b n m -> b 1 n m")
|
22 |
+
if ndim == 2:
|
23 |
+
mask = repeat(mask, "n m -> b 1 n m", b=b)
|
24 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
25 |
+
sim = sim.masked_fill(~mask, max_neg_value)
|
26 |
+
return sim
|
27 |
+
|
28 |
+
|
29 |
+
def create_mask(q_shape, k_shape, device, q_mask=None, k_mask=None):
|
30 |
+
def default(val, d):
|
31 |
+
return val if val is not None else (d() if isfunction(d) else d)
|
32 |
+
b, i, j, device = q_shape[0], q_shape[-2], k_shape[-2], device
|
33 |
+
q_mask = default(q_mask, torch.ones((b, i), device=device, dtype=torch.bool))
|
34 |
+
k_mask = default(k_mask, torch.ones((b, j), device=device, dtype=torch.bool))
|
35 |
+
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1') * rearrange(k_mask, 'b j -> b 1 1 j')
|
36 |
+
return attn_mask
|
37 |
+
|
38 |
+
|
39 |
+
class Attention(nn.Module):
|
40 |
+
def __init__(self, dim, context_dim=None, num_heads=8,
|
41 |
+
qkv_bias=False, qk_scale=None, qk_norm='layernorm',
|
42 |
+
attn_drop=0., proj_drop=0., rope_mode='shared'):
|
43 |
+
super().__init__()
|
44 |
+
self.num_heads = num_heads
|
45 |
+
head_dim = dim // num_heads
|
46 |
+
self.scale = qk_scale or head_dim ** -0.5
|
47 |
+
|
48 |
+
if context_dim is None:
|
49 |
+
self.cross_attn = False
|
50 |
+
else:
|
51 |
+
self.cross_attn = True
|
52 |
+
|
53 |
+
context_dim = dim if context_dim is None else context_dim
|
54 |
+
|
55 |
+
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
|
56 |
+
self.to_k = nn.Linear(context_dim, dim, bias=qkv_bias)
|
57 |
+
self.to_v = nn.Linear(context_dim, dim, bias=qkv_bias)
|
58 |
+
|
59 |
+
if qk_norm is None:
|
60 |
+
self.norm_q = nn.Identity()
|
61 |
+
self.norm_k = nn.Identity()
|
62 |
+
elif qk_norm == 'layernorm':
|
63 |
+
self.norm_q = nn.LayerNorm(head_dim)
|
64 |
+
self.norm_k = nn.LayerNorm(head_dim)
|
65 |
+
else:
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
self.attn_drop_p = attn_drop
|
69 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
70 |
+
self.proj = nn.Linear(dim, dim)
|
71 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
72 |
+
|
73 |
+
if self.cross_attn:
|
74 |
+
assert rope_mode == 'none'
|
75 |
+
self.rope_mode = rope_mode
|
76 |
+
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
|
77 |
+
self.rotary = RotaryEmbedding(dim=head_dim)
|
78 |
+
elif self.rope_mode == 'dual':
|
79 |
+
self.rotary_x = RotaryEmbedding(dim=head_dim)
|
80 |
+
self.rotary_c = RotaryEmbedding(dim=head_dim)
|
81 |
+
|
82 |
+
def _rotary(self, q, k, extras):
|
83 |
+
if self.rope_mode == 'shared':
|
84 |
+
q, k = self.rotary(q=q, k=k)
|
85 |
+
elif self.rope_mode == 'x_only':
|
86 |
+
q_x, k_x = self.rotary(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
|
87 |
+
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
|
88 |
+
q = torch.cat((q_c, q_x), dim=2)
|
89 |
+
k = torch.cat((k_c, k_x), dim=2)
|
90 |
+
elif self.rope_mode == 'dual':
|
91 |
+
q_x, k_x = self.rotary_x(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
|
92 |
+
q_c, k_c = self.rotary_c(q=q[:, :, :extras, :], k=k[:, :, :extras, :])
|
93 |
+
q = torch.cat((q_c, q_x), dim=2)
|
94 |
+
k = torch.cat((k_c, k_x), dim=2)
|
95 |
+
elif self.rope_mode == 'none':
|
96 |
+
pass
|
97 |
+
else:
|
98 |
+
raise NotImplementedError
|
99 |
+
return q, k
|
100 |
+
|
101 |
+
def _attn(self, q, k, v, mask_binary):
|
102 |
+
if ATTENTION_MODE == 'flash':
|
103 |
+
x = F.scaled_dot_product_attention(q, k, v,
|
104 |
+
dropout_p=self.attn_drop_p,
|
105 |
+
attn_mask=mask_binary)
|
106 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
107 |
+
elif ATTENTION_MODE == 'math':
|
108 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
109 |
+
attn = add_mask(attn, mask_binary) if mask_binary is not None else attn
|
110 |
+
attn = attn.softmax(dim=-1)
|
111 |
+
attn = self.attn_drop(attn)
|
112 |
+
x = (attn @ v).transpose(1, 2)
|
113 |
+
x = einops.rearrange(x, 'B H L D -> B L (H D)')
|
114 |
+
else:
|
115 |
+
raise NotImplementedError
|
116 |
+
return x
|
117 |
+
|
118 |
+
def forward(self, x, context=None, context_mask=None, extras=0):
|
119 |
+
B, L, C = x.shape
|
120 |
+
if context is None:
|
121 |
+
context = x
|
122 |
+
|
123 |
+
q = self.to_q(x)
|
124 |
+
k = self.to_k(context)
|
125 |
+
v = self.to_v(context)
|
126 |
+
|
127 |
+
if context_mask is not None:
|
128 |
+
mask_binary = create_mask(x.shape, context.shape,
|
129 |
+
x.device, None, context_mask)
|
130 |
+
else:
|
131 |
+
mask_binary = None
|
132 |
+
|
133 |
+
q = einops.rearrange(q, 'B L (H D) -> B H L D', H=self.num_heads)
|
134 |
+
k = einops.rearrange(k, 'B L (H D) -> B H L D', H=self.num_heads)
|
135 |
+
v = einops.rearrange(v, 'B L (H D) -> B H L D', H=self.num_heads)
|
136 |
+
|
137 |
+
q = self.norm_q(q)
|
138 |
+
k = self.norm_k(k)
|
139 |
+
|
140 |
+
q, k = self._rotary(q, k, extras)
|
141 |
+
|
142 |
+
x = self._attn(q, k, v, mask_binary)
|
143 |
+
|
144 |
+
x = self.proj(x)
|
145 |
+
x = self.proj_drop(x)
|
146 |
+
return x
|
model/rotary.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
"this rope is faster than llama rope with jit script"
|
4 |
+
|
5 |
+
|
6 |
+
def rotate_half(x):
|
7 |
+
x1, x2 = x.chunk(2, dim=-1)
|
8 |
+
return torch.cat((-x2, x1), dim=-1)
|
9 |
+
|
10 |
+
|
11 |
+
# disable in checkpoint mode
|
12 |
+
# @torch.jit.script
|
13 |
+
def apply_rotary_pos_emb(x, cos, sin):
|
14 |
+
# NOTE: This could probably be moved to Triton
|
15 |
+
# Handle a possible sequence length mismatch in between q and k
|
16 |
+
cos = cos[:, :, : x.shape[-2], :]
|
17 |
+
sin = sin[:, :, : x.shape[-2], :]
|
18 |
+
return (x * cos) + (rotate_half(x) * sin)
|
19 |
+
|
20 |
+
|
21 |
+
class RotaryEmbedding(torch.nn.Module):
|
22 |
+
"""
|
23 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
24 |
+
A crucial insight from the method is that the query and keys are
|
25 |
+
transformed by rotation matrices which depend on the relative positions.
|
26 |
+
|
27 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
28 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
29 |
+
|
30 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
31 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
32 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
33 |
+
|
34 |
+
|
35 |
+
.. warning: Please note that this embedding is not registered on purpose, as it is transformative
|
36 |
+
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, dim: int):
|
40 |
+
super().__init__()
|
41 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
42 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
43 |
+
self.register_buffer("inv_freq", inv_freq)
|
44 |
+
self._seq_len_cached = None
|
45 |
+
self._cos_cached = None
|
46 |
+
self._sin_cached = None
|
47 |
+
|
48 |
+
def _update_cos_sin_tables(self, x, seq_dimension=-2):
|
49 |
+
# expect input: B, H, L, D
|
50 |
+
seq_len = x.shape[seq_dimension]
|
51 |
+
|
52 |
+
# Reset the tables if the sequence length has changed,
|
53 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
54 |
+
# also make sure dtype wont change
|
55 |
+
if (
|
56 |
+
seq_len != self._seq_len_cached
|
57 |
+
or self._cos_cached.device != x.device
|
58 |
+
or self._cos_cached.dtype != x.dtype
|
59 |
+
):
|
60 |
+
self._seq_len_cached = seq_len
|
61 |
+
t = torch.arange(
|
62 |
+
x.shape[seq_dimension], device=x.device, dtype=torch.float32
|
63 |
+
)
|
64 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq.to(x.dtype))
|
65 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
66 |
+
|
67 |
+
self._cos_cached = emb.cos()[None, None, :, :].to(x.dtype)
|
68 |
+
self._sin_cached = emb.sin()[None, None, :, :].to(x.dtype)
|
69 |
+
|
70 |
+
return self._cos_cached, self._sin_cached
|
71 |
+
|
72 |
+
def forward(self, q, k):
|
73 |
+
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(
|
74 |
+
q.float(), seq_dimension=-2
|
75 |
+
)
|
76 |
+
if k is not None:
|
77 |
+
return (
|
78 |
+
apply_rotary_pos_emb(q.float(),
|
79 |
+
self._cos_cached,
|
80 |
+
self._sin_cached).type_as(q),
|
81 |
+
apply_rotary_pos_emb(k.float(),
|
82 |
+
self._cos_cached,
|
83 |
+
self._sin_cached).type_as(k),
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
return (
|
87 |
+
apply_rotary_pos_emb(q.float(),
|
88 |
+
self._cos_cached,
|
89 |
+
self._sin_cached).type_as(q),
|
90 |
+
None
|
91 |
+
)
|
model/udit.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
9 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import numpy as np
|
15 |
+
import math
|
16 |
+
import warnings
|
17 |
+
import einops
|
18 |
+
import torch.utils.checkpoint
|
19 |
+
import yaml
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from .attention import Attention
|
22 |
+
|
23 |
+
|
24 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
25 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
26 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
27 |
+
def norm_cdf(x):
|
28 |
+
# Computes standard normal cumulative distribution function
|
29 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
30 |
+
|
31 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
32 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
33 |
+
"The distribution of values may be incorrect.",
|
34 |
+
stacklevel=2)
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
# Values are generated by using a truncated uniform distribution and
|
38 |
+
# then using the inverse CDF for the normal distribution.
|
39 |
+
# Get upper and lower cdf values
|
40 |
+
l = norm_cdf((a - mean) / std)
|
41 |
+
u = norm_cdf((b - mean) / std)
|
42 |
+
|
43 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
44 |
+
# [2l-1, 2u-1].
|
45 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
46 |
+
|
47 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
48 |
+
# standard normal
|
49 |
+
tensor.erfinv_()
|
50 |
+
|
51 |
+
# Transform to proper mean, std
|
52 |
+
tensor.mul_(std * math.sqrt(2.))
|
53 |
+
tensor.add_(mean)
|
54 |
+
|
55 |
+
# Clamp to ensure it's in the proper range
|
56 |
+
tensor.clamp_(min=a, max=b)
|
57 |
+
return tensor
|
58 |
+
|
59 |
+
|
60 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
61 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
62 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
63 |
+
normal distribution. The values are effectively drawn from the
|
64 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
65 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
66 |
+
the bounds. The method used for generating the random values works
|
67 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
68 |
+
Args:
|
69 |
+
tensor: an n-dimensional `torch.Tensor`
|
70 |
+
mean: the mean of the normal distribution
|
71 |
+
std: the standard deviation of the normal distribution
|
72 |
+
a: the minimum cutoff value
|
73 |
+
b: the maximum cutoff value
|
74 |
+
Examples:
|
75 |
+
>>> w = torch.empty(3, 5)
|
76 |
+
>>> nn.init.trunc_normal_(w)
|
77 |
+
"""
|
78 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
79 |
+
|
80 |
+
|
81 |
+
class Mlp(nn.Module):
|
82 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
83 |
+
super().__init__()
|
84 |
+
out_features = out_features or in_features
|
85 |
+
hidden_features = hidden_features or in_features
|
86 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
87 |
+
self.act = act_layer()
|
88 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
89 |
+
self.drop = nn.Dropout(drop)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
x = self.fc1(x)
|
93 |
+
x = self.act(x)
|
94 |
+
x = self.drop(x)
|
95 |
+
x = self.fc2(x)
|
96 |
+
x = self.drop(x)
|
97 |
+
return x
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
class PositionalConvEmbedding(nn.Module):
|
102 |
+
"""
|
103 |
+
Relative positional embedding used in HuBERT
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __init__(self, dim=768, kernel_size=128, groups=16):
|
107 |
+
super().__init__()
|
108 |
+
self.conv = nn.Conv1d(
|
109 |
+
dim,
|
110 |
+
dim,
|
111 |
+
kernel_size=kernel_size,
|
112 |
+
padding=kernel_size // 2,
|
113 |
+
groups=groups,
|
114 |
+
bias=True
|
115 |
+
)
|
116 |
+
self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)
|
117 |
+
|
118 |
+
def forward(self, x):
|
119 |
+
x = x.transpose(2, 1)
|
120 |
+
# B C T
|
121 |
+
x = self.conv(x)
|
122 |
+
x = F.gelu(x[:, :, :-1])
|
123 |
+
x = x.transpose(2, 1)
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
class SinusoidalPositionalEncoding(nn.Module):
|
128 |
+
def __init__(self, dim, length):
|
129 |
+
super(SinusoidalPositionalEncoding, self).__init__()
|
130 |
+
self.length = length
|
131 |
+
self.dim = dim
|
132 |
+
self.register_buffer('pe', self._generate_positional_encoding(length, dim))
|
133 |
+
|
134 |
+
def _generate_positional_encoding(self, length, dim):
|
135 |
+
pe = torch.zeros(length, dim)
|
136 |
+
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
|
137 |
+
div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))
|
138 |
+
|
139 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
140 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
141 |
+
|
142 |
+
pe = pe.unsqueeze(0)
|
143 |
+
return pe
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
x = x + self.pe[:, :x.size(1)]
|
147 |
+
return x
|
148 |
+
|
149 |
+
|
150 |
+
class PE_wrapper(nn.Module):
|
151 |
+
def __init__(self, dim=768, method='none', length=None):
|
152 |
+
super().__init__()
|
153 |
+
self.method = method
|
154 |
+
if method == 'abs':
|
155 |
+
# init absolute pe like UViT
|
156 |
+
self.length = length
|
157 |
+
self.abs_pe = nn.Parameter(torch.zeros(1, length, dim))
|
158 |
+
trunc_normal_(self.abs_pe, std=.02)
|
159 |
+
elif method == 'conv':
|
160 |
+
self.conv_pe = PositionalConvEmbedding(dim=dim)
|
161 |
+
elif method == 'sinu':
|
162 |
+
self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length)
|
163 |
+
elif method == 'none':
|
164 |
+
# skip pe
|
165 |
+
self.id = nn.Identity()
|
166 |
+
else:
|
167 |
+
raise NotImplementedError
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
if self.method == 'abs':
|
171 |
+
_, L, _ = x.shape
|
172 |
+
assert L <= self.length
|
173 |
+
x = x + self.abs_pe[:, :L, :]
|
174 |
+
elif self.method == 'conv':
|
175 |
+
x = x + self.conv_pe(x)
|
176 |
+
elif self.method == 'sinu':
|
177 |
+
x = self.sinu_pe(x)
|
178 |
+
elif self.method == 'none':
|
179 |
+
x = self.id(x)
|
180 |
+
else:
|
181 |
+
raise NotImplementedError
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
def modulate(x, shift, scale):
|
186 |
+
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
187 |
+
|
188 |
+
|
189 |
+
#################################################################################
|
190 |
+
# Embedding Layers for Timesteps and Class Labels #
|
191 |
+
#################################################################################
|
192 |
+
|
193 |
+
class TimestepEmbedder(nn.Module):
|
194 |
+
"""
|
195 |
+
Embeds scalar timesteps into vector representations.
|
196 |
+
"""
|
197 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
198 |
+
super().__init__()
|
199 |
+
self.mlp = nn.Sequential(
|
200 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
201 |
+
nn.SiLU(),
|
202 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
203 |
+
)
|
204 |
+
self.frequency_embedding_size = frequency_embedding_size
|
205 |
+
|
206 |
+
@staticmethod
|
207 |
+
def timestep_embedding(t, dim, max_period=10000):
|
208 |
+
"""
|
209 |
+
Create sinusoidal timestep embeddings.
|
210 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
211 |
+
These may be fractional.
|
212 |
+
:param dim: the dimension of the output.
|
213 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
214 |
+
:return: an (N, D) Tensor of positional embeddings.
|
215 |
+
"""
|
216 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
217 |
+
half = dim // 2
|
218 |
+
freqs = torch.exp(
|
219 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
220 |
+
).to(device=t.device)
|
221 |
+
args = t[:, None].float() * freqs[None]
|
222 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
223 |
+
if dim % 2:
|
224 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
225 |
+
return embedding
|
226 |
+
|
227 |
+
def forward(self, t):
|
228 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
229 |
+
t_emb = self.mlp(t_freq)
|
230 |
+
return t_emb
|
231 |
+
|
232 |
+
|
233 |
+
class LabelEmbedder(nn.Module):
|
234 |
+
"""
|
235 |
+
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
|
236 |
+
"""
|
237 |
+
def __init__(self, num_classes, hidden_size, dropout_prob):
|
238 |
+
super().__init__()
|
239 |
+
use_cfg_embedding = dropout_prob > 0
|
240 |
+
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
|
241 |
+
self.num_classes = num_classes
|
242 |
+
self.dropout_prob = dropout_prob
|
243 |
+
|
244 |
+
def token_drop(self, labels, force_drop_ids=None):
|
245 |
+
"""
|
246 |
+
Drops labels to enable classifier-free guidance.
|
247 |
+
"""
|
248 |
+
if force_drop_ids is None:
|
249 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
250 |
+
else:
|
251 |
+
drop_ids = force_drop_ids == 1
|
252 |
+
labels = torch.where(drop_ids, self.num_classes, labels)
|
253 |
+
return labels
|
254 |
+
|
255 |
+
def forward(self, labels, train, force_drop_ids=None):
|
256 |
+
use_dropout = self.dropout_prob > 0
|
257 |
+
if (train and use_dropout) or (force_drop_ids is not None):
|
258 |
+
labels = self.token_drop(labels, force_drop_ids)
|
259 |
+
embeddings = self.embedding_table(labels)
|
260 |
+
return embeddings
|
261 |
+
|
262 |
+
|
263 |
+
#################################################################################
|
264 |
+
# Core DiT Model #
|
265 |
+
#################################################################################
|
266 |
+
|
267 |
+
class DiTBlock(nn.Module):
|
268 |
+
"""
|
269 |
+
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
|
270 |
+
"""
|
271 |
+
def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, skip=False, skip_norm=True, use_checkpoint=True, **block_kwargs):
|
272 |
+
super().__init__()
|
273 |
+
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
274 |
+
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
|
275 |
+
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
276 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
277 |
+
approx_gelu = lambda: nn.GELU(approximate="tanh")
|
278 |
+
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
|
279 |
+
self.adaLN_modulation = nn.Sequential(
|
280 |
+
nn.SiLU(),
|
281 |
+
nn.Linear(hidden_size, 6 * hidden_size, bias=True)
|
282 |
+
)
|
283 |
+
self.skip_linear = nn.Linear(2 * hidden_size, hidden_size) if skip else None
|
284 |
+
self.skip_norm = nn.LayerNorm(2 * hidden_size, elementwise_affine=False, eps=1e-6) if skip_norm else nn.Identity()
|
285 |
+
self.use_checkpoint = use_checkpoint
|
286 |
+
|
287 |
+
def forward(self, x, c, skip=None):
|
288 |
+
if self.use_checkpoint:
|
289 |
+
return torch.utils.checkpoint.checkpoint(self._forward, x, c, skip)
|
290 |
+
else:
|
291 |
+
return self._forward(x, c, skip)
|
292 |
+
|
293 |
+
def _forward(self, x, c, skip=None):
|
294 |
+
if self.skip_linear is not None:
|
295 |
+
cat = torch.cat([x, skip], dim=-1)
|
296 |
+
cat = self.skip_norm(cat)
|
297 |
+
x = self.skip_linear(cat)
|
298 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
|
299 |
+
x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
|
300 |
+
x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
|
301 |
+
return x
|
302 |
+
|
303 |
+
|
304 |
+
class FinalLayer(nn.Module):
|
305 |
+
"""
|
306 |
+
The final layer of DiT.
|
307 |
+
"""
|
308 |
+
def __init__(self, hidden_size, output_dim):
|
309 |
+
super().__init__()
|
310 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
311 |
+
self.linear = nn.Linear(hidden_size, output_dim, bias=True)
|
312 |
+
self.adaLN_modulation = nn.Sequential(
|
313 |
+
nn.SiLU(),
|
314 |
+
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
315 |
+
)
|
316 |
+
|
317 |
+
def forward(self, x, c):
|
318 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
|
319 |
+
x = modulate(self.norm_final(x), shift, scale)
|
320 |
+
x = self.linear(x)
|
321 |
+
return x
|
322 |
+
|
323 |
+
|
324 |
+
class UDiT(nn.Module):
|
325 |
+
"""
|
326 |
+
Diffusion model with a Transformer backbone.
|
327 |
+
"""
|
328 |
+
def __init__(
|
329 |
+
self,
|
330 |
+
input_dim=256,
|
331 |
+
output_dim=128,
|
332 |
+
pos_method='none',
|
333 |
+
pos_length=500,
|
334 |
+
timbre_dim=512,
|
335 |
+
hidden_size=1152,
|
336 |
+
depth=28,
|
337 |
+
num_heads=16,
|
338 |
+
mlp_ratio=4.0,
|
339 |
+
use_checkpoint=True
|
340 |
+
):
|
341 |
+
super().__init__()
|
342 |
+
self.num_heads = num_heads
|
343 |
+
self.input_proj = nn.Linear(input_dim, hidden_size, bias=True)
|
344 |
+
self.t_embedder = TimestepEmbedder(hidden_size)
|
345 |
+
self.pos_embed = PE_wrapper(dim=hidden_size, method=pos_method, length=pos_length)
|
346 |
+
self.timbre_proj = nn.Linear(timbre_dim, hidden_size, bias=True)
|
347 |
+
|
348 |
+
self.in_blocks = nn.ModuleList([
|
349 |
+
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) for _ in range(depth // 2)
|
350 |
+
])
|
351 |
+
self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint)
|
352 |
+
self.out_blocks = nn.ModuleList([
|
353 |
+
DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, skip=True, use_checkpoint=use_checkpoint) for _ in range(depth // 2)
|
354 |
+
])
|
355 |
+
|
356 |
+
self.final_layer = FinalLayer(hidden_size, output_dim)
|
357 |
+
self.initialize_weights()
|
358 |
+
|
359 |
+
def initialize_weights(self):
|
360 |
+
# Initialize transformer layers:
|
361 |
+
def _basic_init(module):
|
362 |
+
if isinstance(module, nn.Linear):
|
363 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
364 |
+
if module.bias is not None:
|
365 |
+
nn.init.constant_(module.bias, 0)
|
366 |
+
self.apply(_basic_init)
|
367 |
+
|
368 |
+
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
|
369 |
+
nn.init.normal_(self.input_proj.weight, std=0.02)
|
370 |
+
nn.init.normal_(self.timbre_proj.weight, std=0.02)
|
371 |
+
|
372 |
+
# Initialize timestep embedding MLP:
|
373 |
+
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
374 |
+
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
375 |
+
|
376 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
377 |
+
for block in self.in_blocks:
|
378 |
+
nn.init.constant_(self.mid_block.adaLN_modulation[-1].weight, 0)
|
379 |
+
nn.init.constant_(self.mid_block.adaLN_modulation[-1].bias, 0)
|
380 |
+
|
381 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
382 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
383 |
+
|
384 |
+
for block in self.out_blocks:
|
385 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
386 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
387 |
+
|
388 |
+
# Zero-out output layers:
|
389 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
390 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
391 |
+
nn.init.constant_(self.final_layer.linear.weight, 0)
|
392 |
+
nn.init.constant_(self.final_layer.linear.bias, 0)
|
393 |
+
|
394 |
+
def forward(self, x, timesteps, mixture, timbre):
|
395 |
+
"""
|
396 |
+
Forward pass of DiT.
|
397 |
+
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
|
398 |
+
t: (N,) tensor of diffusion timesteps
|
399 |
+
y: (N,) tensor of class labels
|
400 |
+
"""
|
401 |
+
x = x.transpose(2,1)
|
402 |
+
mixture = mixture.transpose(2,1)
|
403 |
+
x = self.input_proj(torch.cat((x, mixture), dim=-1))
|
404 |
+
x = self.pos_embed(x)
|
405 |
+
if not torch.is_tensor(timesteps):
|
406 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
|
407 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
408 |
+
timesteps = timesteps[None].to(x.device)
|
409 |
+
t = self.t_embedder(timesteps) # (N, D)
|
410 |
+
timbre = self.timbre_proj(timbre)
|
411 |
+
c = t + timbre # (N, D)
|
412 |
+
|
413 |
+
skips = []
|
414 |
+
for blk in self.in_blocks:
|
415 |
+
x = blk(x, c)
|
416 |
+
skips.append(x)
|
417 |
+
|
418 |
+
x = self.mid_block(x, c)
|
419 |
+
|
420 |
+
for blk in self.out_blocks:
|
421 |
+
x = blk(x, c, skips.pop())
|
422 |
+
|
423 |
+
x = self.final_layer(x, c) # (N, T, out_dim)
|
424 |
+
x = x.transpose(2, 1)
|
425 |
+
return x
|
426 |
+
|
427 |
+
|
428 |
+
#################################################################################
|
429 |
+
# DiT Configs #
|
430 |
+
#################################################################################
|
431 |
+
|
432 |
+
def DiT_XL_2(**kwargs):
|
433 |
+
return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
|
434 |
+
|
435 |
+
def DiT_XL_4(**kwargs):
|
436 |
+
return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
|
437 |
+
|
438 |
+
def DiT_XL_8(**kwargs):
|
439 |
+
return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)
|
440 |
+
|
441 |
+
def DiT_L_2(**kwargs):
|
442 |
+
return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)
|
443 |
+
|
444 |
+
def DiT_L_4(**kwargs):
|
445 |
+
return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)
|
446 |
+
|
447 |
+
def DiT_L_8(**kwargs):
|
448 |
+
return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)
|
449 |
+
|
450 |
+
def DiT_B_2(**kwargs):
|
451 |
+
return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)
|
452 |
+
|
453 |
+
def DiT_B_4(**kwargs):
|
454 |
+
return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)
|
455 |
+
|
456 |
+
def DiT_B_8(**kwargs):
|
457 |
+
return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)
|
458 |
+
|
459 |
+
def DiT_S_2(**kwargs):
|
460 |
+
return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)
|
461 |
+
|
462 |
+
def DiT_S_4(**kwargs):
|
463 |
+
return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)
|
464 |
+
|
465 |
+
def DiT_S_8(**kwargs):
|
466 |
+
return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)
|
467 |
+
|
468 |
+
|
469 |
+
DiT_models = {
|
470 |
+
'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8,
|
471 |
+
'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8,
|
472 |
+
'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8,
|
473 |
+
'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8,
|
474 |
+
}
|
475 |
+
|
476 |
+
if __name__ == "__main__":
|
477 |
+
with open('/export/corpora7/HW/DPMTSE-main/src/config/DiffTSE_udit_conv_v_b_1000.yaml', 'r') as fp:
|
478 |
+
config = yaml.safe_load(fp)
|
479 |
+
device = 'cuda'
|
480 |
+
|
481 |
+
model = UDiT(
|
482 |
+
**config['diffwrap']['UDiT']
|
483 |
+
).to(device)
|
484 |
+
|
485 |
+
x = torch.rand((1, 128, 150)).to(device)
|
486 |
+
t = torch.randint(0, 1000, (1, )).long().to(device)
|
487 |
+
mixture = torch.rand((1, 128, 150)).to(device)
|
488 |
+
timbre = torch.rand((1, 512)).to(device)
|
489 |
+
|
490 |
+
y = model(x, t, mixture, timbre)
|
491 |
+
print(y.shape)
|
pretrained_models/config.json
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "autoencoder",
|
3 |
+
"sample_size": 12000,
|
4 |
+
"sample_rate": 24000,
|
5 |
+
"audio_channels": 1,
|
6 |
+
"model": {
|
7 |
+
"encoder": {
|
8 |
+
"type": "oobleck",
|
9 |
+
"config": {
|
10 |
+
"in_channels": 1,
|
11 |
+
"channels": 128,
|
12 |
+
"c_mults": [1, 2, 4, 8],
|
13 |
+
"strides": [2, 4, 6, 10],
|
14 |
+
"latent_dim": 256,
|
15 |
+
"use_snake": true
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"decoder": {
|
19 |
+
"type": "oobleck",
|
20 |
+
"config": {
|
21 |
+
"out_channels": 1,
|
22 |
+
"channels": 128,
|
23 |
+
"c_mults": [1, 2, 4, 8],
|
24 |
+
"strides": [2, 4, 6, 10],
|
25 |
+
"latent_dim": 128,
|
26 |
+
"use_snake": true,
|
27 |
+
"final_tanh": false
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bottleneck": {
|
31 |
+
"type": "vae"
|
32 |
+
},
|
33 |
+
"latent_dim": 128,
|
34 |
+
"downsampling_ratio": 480,
|
35 |
+
"io_channels": 1
|
36 |
+
},
|
37 |
+
"training": {
|
38 |
+
"learning_rate": 1.5e-4,
|
39 |
+
"warmup_steps": 0,
|
40 |
+
"use_ema": false,
|
41 |
+
"optimizer_configs": {
|
42 |
+
"autoencoder": {
|
43 |
+
"optimizer": {
|
44 |
+
"type": "AdamW",
|
45 |
+
"config": {
|
46 |
+
"betas": [0.8, 0.99],
|
47 |
+
"lr": 1.5e-4,
|
48 |
+
"weight_decay": 1e-3
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"scheduler": {
|
52 |
+
"type": "InverseLR",
|
53 |
+
"config": {
|
54 |
+
"inv_gamma": 200000,
|
55 |
+
"power": 0.5,
|
56 |
+
"warmup": 0.999
|
57 |
+
}
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"discriminator": {
|
61 |
+
"optimizer": {
|
62 |
+
"type": "AdamW",
|
63 |
+
"config": {
|
64 |
+
"betas": [0.8, 0.99],
|
65 |
+
"lr": 3e-4,
|
66 |
+
"weight_decay": 1e-3
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"scheduler": {
|
70 |
+
"type": "InverseLR",
|
71 |
+
"config": {
|
72 |
+
"inv_gamma": 200000,
|
73 |
+
"power": 0.5,
|
74 |
+
"warmup": 0.999
|
75 |
+
}
|
76 |
+
}
|
77 |
+
}
|
78 |
+
},
|
79 |
+
"loss_configs": {
|
80 |
+
"discriminator": {
|
81 |
+
"type": "encodec",
|
82 |
+
"config": {
|
83 |
+
"filters": 64,
|
84 |
+
"n_ffts": [1280, 640, 320, 160, 80],
|
85 |
+
"hop_lengths": [320, 160, 80, 40, 20],
|
86 |
+
"win_lengths": [1280, 640, 320, 160, 80]
|
87 |
+
},
|
88 |
+
"weights": {
|
89 |
+
"adversarial": 0.1,
|
90 |
+
"feature_matching": 5.0
|
91 |
+
}
|
92 |
+
},
|
93 |
+
"spectral": {
|
94 |
+
"type": "mrstft",
|
95 |
+
"config": {
|
96 |
+
"fft_sizes": [1280, 640, 320, 160, 80, 40, 20],
|
97 |
+
"hop_sizes": [320, 160, 80, 40, 20, 10, 5],
|
98 |
+
"win_lengths": [1280, 640, 320, 160, 80, 40, 20],
|
99 |
+
"perceptual_weighting": true
|
100 |
+
},
|
101 |
+
"weights": {
|
102 |
+
"mrstft": 1.0
|
103 |
+
}
|
104 |
+
},
|
105 |
+
"time": {
|
106 |
+
"type": "l1",
|
107 |
+
"weights": {
|
108 |
+
"l1": 0.0
|
109 |
+
}
|
110 |
+
},
|
111 |
+
"bottleneck": {
|
112 |
+
"type": "kl",
|
113 |
+
"weights": {
|
114 |
+
"kl": 1e-4
|
115 |
+
}
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"demo": {
|
119 |
+
"demo_every": 10000
|
120 |
+
}
|
121 |
+
}
|
122 |
+
}
|
vae_modules/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
vae_modules/autoencoder_wrapper.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from .dac import DAC
|
4 |
+
from .stable_vae import load_vae
|
5 |
+
|
6 |
+
|
7 |
+
class Autoencoder(nn.Module):
|
8 |
+
def __init__(self, ckpt_path, model_type='stable_vae', quantization_first=True):
|
9 |
+
super(Autoencoder, self).__init__()
|
10 |
+
self.model_type = model_type
|
11 |
+
if self.model_type == 'dac':
|
12 |
+
model = DAC.load(ckpt_path)
|
13 |
+
elif self.model_type == 'stable_vae':
|
14 |
+
model = load_vae(ckpt_path)
|
15 |
+
else:
|
16 |
+
raise NotImplementedError(f"Model type not implemented: {self.model_type}")
|
17 |
+
self.ae = model.eval()
|
18 |
+
self.quantization_first = quantization_first
|
19 |
+
print(f'Autoencoder quantization first mode: {quantization_first}')
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def forward(self, audio=None, embedding=None):
|
23 |
+
if self.model_type == 'dac':
|
24 |
+
return self.process_dac(audio, embedding)
|
25 |
+
elif self.model_type == 'encodec':
|
26 |
+
return self.process_encodec(audio, embedding)
|
27 |
+
elif self.model_type == 'stable_vae':
|
28 |
+
return self.process_stable_vae(audio, embedding)
|
29 |
+
else:
|
30 |
+
raise NotImplementedError(f"Model type not implemented: {self.model_type}")
|
31 |
+
|
32 |
+
def process_dac(self, audio=None, embedding=None):
|
33 |
+
if audio is not None:
|
34 |
+
z = self.ae.encoder(audio)
|
35 |
+
if self.quantization_first:
|
36 |
+
z, *_ = self.ae.quantizer(z, None)
|
37 |
+
return z
|
38 |
+
elif embedding is not None:
|
39 |
+
z = embedding
|
40 |
+
if self.quantization_first:
|
41 |
+
audio = self.ae.decoder(z)
|
42 |
+
else:
|
43 |
+
z, *_ = self.ae.quantizer(z, None)
|
44 |
+
audio = self.ae.decoder(z)
|
45 |
+
return audio
|
46 |
+
else:
|
47 |
+
raise ValueError("Either audio or embedding must be provided.")
|
48 |
+
|
49 |
+
def process_encodec(self, audio=None, embedding=None):
|
50 |
+
if audio is not None:
|
51 |
+
z = self.ae.encoder(audio)
|
52 |
+
if self.quantization_first:
|
53 |
+
code = self.ae.quantizer.encode(z)
|
54 |
+
z = self.ae.quantizer.decode(code)
|
55 |
+
return z
|
56 |
+
elif embedding is not None:
|
57 |
+
z = embedding
|
58 |
+
if self.quantization_first:
|
59 |
+
audio = self.ae.decoder(z)
|
60 |
+
else:
|
61 |
+
code = self.ae.quantizer.encode(z)
|
62 |
+
z = self.ae.quantizer.decode(code)
|
63 |
+
audio = self.ae.decoder(z)
|
64 |
+
return audio
|
65 |
+
else:
|
66 |
+
raise ValueError("Either audio or embedding must be provided.")
|
67 |
+
|
68 |
+
def process_stable_vae(self, audio=None, embedding=None):
|
69 |
+
if audio is not None:
|
70 |
+
z = self.ae.encoder(audio)
|
71 |
+
if self.quantization_first:
|
72 |
+
z = self.ae.bottleneck.encode(z)
|
73 |
+
return z
|
74 |
+
if embedding is not None:
|
75 |
+
z = embedding
|
76 |
+
if self.quantization_first:
|
77 |
+
audio = self.ae.decoder(z)
|
78 |
+
else:
|
79 |
+
z = self.ae.bottleneck.encode(z)
|
80 |
+
audio = self.ae.decoder(z)
|
81 |
+
return audio
|
82 |
+
else:
|
83 |
+
raise ValueError("Either audio or embedding must be provided.")
|
vae_modules/clap_wrapper.py
ADDED
File without changes
|
vae_modules/dac/__init__.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__version__ = "1.0.0"
|
2 |
+
|
3 |
+
# preserved here for legacy reasons
|
4 |
+
__model_version__ = "latest"
|
5 |
+
|
6 |
+
import audiotools
|
7 |
+
|
8 |
+
audiotools.ml.BaseModel.INTERN += ["dac.**"]
|
9 |
+
audiotools.ml.BaseModel.EXTERN += ["einops"]
|
10 |
+
|
11 |
+
|
12 |
+
from . import nn
|
13 |
+
from . import model
|
14 |
+
from . import utils
|
15 |
+
from .model import DAC
|
16 |
+
from .model import DACFile
|
vae_modules/dac/__main__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import argbind
|
4 |
+
|
5 |
+
from dac.utils import download
|
6 |
+
from dac.utils.decode import decode
|
7 |
+
from dac.utils.encode import encode
|
8 |
+
|
9 |
+
STAGES = ["encode", "decode", "download"]
|
10 |
+
|
11 |
+
|
12 |
+
def run(stage: str):
|
13 |
+
"""Run stages.
|
14 |
+
|
15 |
+
Parameters
|
16 |
+
----------
|
17 |
+
stage : str
|
18 |
+
Stage to run
|
19 |
+
"""
|
20 |
+
if stage not in STAGES:
|
21 |
+
raise ValueError(f"Unknown command: {stage}. Allowed commands are {STAGES}")
|
22 |
+
stage_fn = globals()[stage]
|
23 |
+
|
24 |
+
if stage == "download":
|
25 |
+
stage_fn()
|
26 |
+
return
|
27 |
+
|
28 |
+
stage_fn()
|
29 |
+
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
group = sys.argv.pop(1)
|
33 |
+
args = argbind.parse_args(group=group)
|
34 |
+
|
35 |
+
with argbind.scope(args):
|
36 |
+
run(group)
|
vae_modules/dac/compare/__init__.py
ADDED
File without changes
|
vae_modules/dac/compare/encodec.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from audiotools import AudioSignal
|
3 |
+
from audiotools.ml import BaseModel
|
4 |
+
from encodec import EncodecModel
|
5 |
+
|
6 |
+
|
7 |
+
class Encodec(BaseModel):
|
8 |
+
def __init__(self, sample_rate: int = 24000, bandwidth: float = 24.0):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
if sample_rate == 24000:
|
12 |
+
self.model = EncodecModel.encodec_model_24khz()
|
13 |
+
else:
|
14 |
+
self.model = EncodecModel.encodec_model_48khz()
|
15 |
+
self.model.set_target_bandwidth(bandwidth)
|
16 |
+
self.sample_rate = 44100
|
17 |
+
|
18 |
+
def forward(
|
19 |
+
self,
|
20 |
+
audio_data: torch.Tensor,
|
21 |
+
sample_rate: int = 44100,
|
22 |
+
n_quantizers: int = None,
|
23 |
+
):
|
24 |
+
signal = AudioSignal(audio_data, sample_rate)
|
25 |
+
signal.resample(self.model.sample_rate)
|
26 |
+
recons = self.model(signal.audio_data)
|
27 |
+
recons = AudioSignal(recons, self.model.sample_rate)
|
28 |
+
recons.resample(sample_rate)
|
29 |
+
return {"audio": recons.audio_data}
|
30 |
+
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
import numpy as np
|
34 |
+
from functools import partial
|
35 |
+
|
36 |
+
model = Encodec()
|
37 |
+
|
38 |
+
for n, m in model.named_modules():
|
39 |
+
o = m.extra_repr()
|
40 |
+
p = sum([np.prod(p.size()) for p in m.parameters()])
|
41 |
+
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
|
42 |
+
setattr(m, "extra_repr", partial(fn, o=o, p=p))
|
43 |
+
print(model)
|
44 |
+
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
|
45 |
+
|
46 |
+
length = 88200 * 2
|
47 |
+
x = torch.randn(1, 1, length).to(model.device)
|
48 |
+
x.requires_grad_(True)
|
49 |
+
x.retain_grad()
|
50 |
+
|
51 |
+
# Make a forward pass
|
52 |
+
out = model(x)["audio"]
|
53 |
+
|
54 |
+
print(x.shape, out.shape)
|
vae_modules/dac/model/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import CodecMixin
|
2 |
+
from .base import DACFile
|
3 |
+
from .dac import DAC
|
4 |
+
from .discriminator import Discriminator
|
vae_modules/dac/model/base.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import tqdm
|
9 |
+
from audiotools import AudioSignal
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
SUPPORTED_VERSIONS = ["1.0.0"]
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class DACFile:
|
17 |
+
codes: torch.Tensor
|
18 |
+
|
19 |
+
# Metadata
|
20 |
+
chunk_length: int
|
21 |
+
original_length: int
|
22 |
+
input_db: float
|
23 |
+
channels: int
|
24 |
+
sample_rate: int
|
25 |
+
padding: bool
|
26 |
+
dac_version: str
|
27 |
+
|
28 |
+
def save(self, path):
|
29 |
+
artifacts = {
|
30 |
+
"codes": self.codes.numpy().astype(np.uint16),
|
31 |
+
"metadata": {
|
32 |
+
"input_db": self.input_db.numpy().astype(np.float32),
|
33 |
+
"original_length": self.original_length,
|
34 |
+
"sample_rate": self.sample_rate,
|
35 |
+
"chunk_length": self.chunk_length,
|
36 |
+
"channels": self.channels,
|
37 |
+
"padding": self.padding,
|
38 |
+
"dac_version": SUPPORTED_VERSIONS[-1],
|
39 |
+
},
|
40 |
+
}
|
41 |
+
path = Path(path).with_suffix(".dac")
|
42 |
+
with open(path, "wb") as f:
|
43 |
+
np.save(f, artifacts)
|
44 |
+
return path
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def load(cls, path):
|
48 |
+
artifacts = np.load(path, allow_pickle=True)[()]
|
49 |
+
codes = torch.from_numpy(artifacts["codes"].astype(int))
|
50 |
+
if artifacts["metadata"].get("dac_version", None) not in SUPPORTED_VERSIONS:
|
51 |
+
raise RuntimeError(
|
52 |
+
f"Given file {path} can't be loaded with this version of descript-audio-codec."
|
53 |
+
)
|
54 |
+
return cls(codes=codes, **artifacts["metadata"])
|
55 |
+
|
56 |
+
|
57 |
+
class CodecMixin:
|
58 |
+
@property
|
59 |
+
def padding(self):
|
60 |
+
if not hasattr(self, "_padding"):
|
61 |
+
self._padding = True
|
62 |
+
return self._padding
|
63 |
+
|
64 |
+
@padding.setter
|
65 |
+
def padding(self, value):
|
66 |
+
assert isinstance(value, bool)
|
67 |
+
|
68 |
+
layers = [
|
69 |
+
l for l in self.modules() if isinstance(l, (nn.Conv1d, nn.ConvTranspose1d))
|
70 |
+
]
|
71 |
+
|
72 |
+
for layer in layers:
|
73 |
+
if value:
|
74 |
+
if hasattr(layer, "original_padding"):
|
75 |
+
layer.padding = layer.original_padding
|
76 |
+
else:
|
77 |
+
layer.original_padding = layer.padding
|
78 |
+
layer.padding = tuple(0 for _ in range(len(layer.padding)))
|
79 |
+
|
80 |
+
self._padding = value
|
81 |
+
|
82 |
+
def get_delay(self):
|
83 |
+
# Any number works here, delay is invariant to input length
|
84 |
+
l_out = self.get_output_length(0)
|
85 |
+
L = l_out
|
86 |
+
|
87 |
+
layers = []
|
88 |
+
for layer in self.modules():
|
89 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
90 |
+
layers.append(layer)
|
91 |
+
|
92 |
+
for layer in reversed(layers):
|
93 |
+
d = layer.dilation[0]
|
94 |
+
k = layer.kernel_size[0]
|
95 |
+
s = layer.stride[0]
|
96 |
+
|
97 |
+
if isinstance(layer, nn.ConvTranspose1d):
|
98 |
+
L = ((L - d * (k - 1) - 1) / s) + 1
|
99 |
+
elif isinstance(layer, nn.Conv1d):
|
100 |
+
L = (L - 1) * s + d * (k - 1) + 1
|
101 |
+
|
102 |
+
L = math.ceil(L)
|
103 |
+
|
104 |
+
l_in = L
|
105 |
+
|
106 |
+
return (l_in - l_out) // 2
|
107 |
+
|
108 |
+
def get_output_length(self, input_length):
|
109 |
+
L = input_length
|
110 |
+
# Calculate output length
|
111 |
+
for layer in self.modules():
|
112 |
+
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
113 |
+
d = layer.dilation[0]
|
114 |
+
k = layer.kernel_size[0]
|
115 |
+
s = layer.stride[0]
|
116 |
+
|
117 |
+
if isinstance(layer, nn.Conv1d):
|
118 |
+
L = ((L - d * (k - 1) - 1) / s) + 1
|
119 |
+
elif isinstance(layer, nn.ConvTranspose1d):
|
120 |
+
L = (L - 1) * s + d * (k - 1) + 1
|
121 |
+
|
122 |
+
L = math.floor(L)
|
123 |
+
return L
|
124 |
+
|
125 |
+
@torch.no_grad()
|
126 |
+
def compress(
|
127 |
+
self,
|
128 |
+
audio_path_or_signal: Union[str, Path, AudioSignal],
|
129 |
+
win_duration: float = 1.0,
|
130 |
+
verbose: bool = False,
|
131 |
+
normalize_db: float = -16,
|
132 |
+
n_quantizers: int = None,
|
133 |
+
) -> DACFile:
|
134 |
+
"""Processes an audio signal from a file or AudioSignal object into
|
135 |
+
discrete codes. This function processes the signal in short windows,
|
136 |
+
using constant GPU memory.
|
137 |
+
|
138 |
+
Parameters
|
139 |
+
----------
|
140 |
+
audio_path_or_signal : Union[str, Path, AudioSignal]
|
141 |
+
audio signal to reconstruct
|
142 |
+
win_duration : float, optional
|
143 |
+
window duration in seconds, by default 5.0
|
144 |
+
verbose : bool, optional
|
145 |
+
by default False
|
146 |
+
normalize_db : float, optional
|
147 |
+
normalize db, by default -16
|
148 |
+
|
149 |
+
Returns
|
150 |
+
-------
|
151 |
+
DACFile
|
152 |
+
Object containing compressed codes and metadata
|
153 |
+
required for decompression
|
154 |
+
"""
|
155 |
+
audio_signal = audio_path_or_signal
|
156 |
+
if isinstance(audio_signal, (str, Path)):
|
157 |
+
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
|
158 |
+
|
159 |
+
self.eval()
|
160 |
+
original_padding = self.padding
|
161 |
+
original_device = audio_signal.device
|
162 |
+
|
163 |
+
audio_signal = audio_signal.clone()
|
164 |
+
original_sr = audio_signal.sample_rate
|
165 |
+
|
166 |
+
resample_fn = audio_signal.resample
|
167 |
+
loudness_fn = audio_signal.loudness
|
168 |
+
|
169 |
+
# If audio is > 10 minutes long, use the ffmpeg versions
|
170 |
+
if audio_signal.signal_duration >= 10 * 60 * 60:
|
171 |
+
resample_fn = audio_signal.ffmpeg_resample
|
172 |
+
loudness_fn = audio_signal.ffmpeg_loudness
|
173 |
+
|
174 |
+
original_length = audio_signal.signal_length
|
175 |
+
resample_fn(self.sample_rate)
|
176 |
+
input_db = loudness_fn()
|
177 |
+
|
178 |
+
if normalize_db is not None:
|
179 |
+
audio_signal.normalize(normalize_db)
|
180 |
+
audio_signal.ensure_max_of_audio()
|
181 |
+
|
182 |
+
nb, nac, nt = audio_signal.audio_data.shape
|
183 |
+
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
|
184 |
+
win_duration = (
|
185 |
+
audio_signal.signal_duration if win_duration is None else win_duration
|
186 |
+
)
|
187 |
+
|
188 |
+
if audio_signal.signal_duration <= win_duration:
|
189 |
+
# Unchunked compression (used if signal length < win duration)
|
190 |
+
self.padding = True
|
191 |
+
n_samples = nt
|
192 |
+
hop = nt
|
193 |
+
else:
|
194 |
+
# Chunked inference
|
195 |
+
self.padding = False
|
196 |
+
# Zero-pad signal on either side by the delay
|
197 |
+
audio_signal.zero_pad(self.delay, self.delay)
|
198 |
+
n_samples = int(win_duration * self.sample_rate)
|
199 |
+
# Round n_samples to nearest hop length multiple
|
200 |
+
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
|
201 |
+
hop = self.get_output_length(n_samples)
|
202 |
+
|
203 |
+
codes = []
|
204 |
+
range_fn = range if not verbose else tqdm.trange
|
205 |
+
|
206 |
+
for i in range_fn(0, nt, hop):
|
207 |
+
x = audio_signal[..., i : i + n_samples]
|
208 |
+
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
|
209 |
+
|
210 |
+
audio_data = x.audio_data.to(self.device)
|
211 |
+
audio_data = self.preprocess(audio_data, self.sample_rate)
|
212 |
+
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
|
213 |
+
codes.append(c.to(original_device))
|
214 |
+
chunk_length = c.shape[-1]
|
215 |
+
|
216 |
+
codes = torch.cat(codes, dim=-1)
|
217 |
+
|
218 |
+
dac_file = DACFile(
|
219 |
+
codes=codes,
|
220 |
+
chunk_length=chunk_length,
|
221 |
+
original_length=original_length,
|
222 |
+
input_db=input_db,
|
223 |
+
channels=nac,
|
224 |
+
sample_rate=original_sr,
|
225 |
+
padding=self.padding,
|
226 |
+
dac_version=SUPPORTED_VERSIONS[-1],
|
227 |
+
)
|
228 |
+
|
229 |
+
if n_quantizers is not None:
|
230 |
+
codes = codes[:, :n_quantizers, :]
|
231 |
+
|
232 |
+
self.padding = original_padding
|
233 |
+
return dac_file
|
234 |
+
|
235 |
+
@torch.no_grad()
|
236 |
+
def decompress(
|
237 |
+
self,
|
238 |
+
obj: Union[str, Path, DACFile],
|
239 |
+
verbose: bool = False,
|
240 |
+
) -> AudioSignal:
|
241 |
+
"""Reconstruct audio from a given .dac file
|
242 |
+
|
243 |
+
Parameters
|
244 |
+
----------
|
245 |
+
obj : Union[str, Path, DACFile]
|
246 |
+
.dac file location or corresponding DACFile object.
|
247 |
+
verbose : bool, optional
|
248 |
+
Prints progress if True, by default False
|
249 |
+
|
250 |
+
Returns
|
251 |
+
-------
|
252 |
+
AudioSignal
|
253 |
+
Object with the reconstructed audio
|
254 |
+
"""
|
255 |
+
self.eval()
|
256 |
+
if isinstance(obj, (str, Path)):
|
257 |
+
obj = DACFile.load(obj)
|
258 |
+
|
259 |
+
original_padding = self.padding
|
260 |
+
self.padding = obj.padding
|
261 |
+
|
262 |
+
range_fn = range if not verbose else tqdm.trange
|
263 |
+
codes = obj.codes
|
264 |
+
original_device = codes.device
|
265 |
+
chunk_length = obj.chunk_length
|
266 |
+
recons = []
|
267 |
+
|
268 |
+
for i in range_fn(0, codes.shape[-1], chunk_length):
|
269 |
+
c = codes[..., i : i + chunk_length].to(self.device)
|
270 |
+
z = self.quantizer.from_codes(c)[0]
|
271 |
+
r = self.decode(z)
|
272 |
+
recons.append(r.to(original_device))
|
273 |
+
|
274 |
+
recons = torch.cat(recons, dim=-1)
|
275 |
+
recons = AudioSignal(recons, self.sample_rate)
|
276 |
+
|
277 |
+
resample_fn = recons.resample
|
278 |
+
loudness_fn = recons.loudness
|
279 |
+
|
280 |
+
# If audio is > 10 minutes long, use the ffmpeg versions
|
281 |
+
if recons.signal_duration >= 10 * 60 * 60:
|
282 |
+
resample_fn = recons.ffmpeg_resample
|
283 |
+
loudness_fn = recons.ffmpeg_loudness
|
284 |
+
|
285 |
+
recons.normalize(obj.input_db)
|
286 |
+
resample_fn(obj.sample_rate)
|
287 |
+
recons = recons[..., : obj.original_length]
|
288 |
+
loudness_fn()
|
289 |
+
recons.audio_data = recons.audio_data.reshape(
|
290 |
+
-1, obj.channels, obj.original_length
|
291 |
+
)
|
292 |
+
|
293 |
+
self.padding = original_padding
|
294 |
+
return recons
|
vae_modules/dac/model/dac.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List
|
3 |
+
from typing import Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from audiotools import AudioSignal
|
8 |
+
from audiotools.ml import BaseModel
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
from .base import CodecMixin
|
12 |
+
from ..nn.layers import Snake1d
|
13 |
+
from ..nn.layers import WNConv1d
|
14 |
+
from ..nn.layers import WNConvTranspose1d
|
15 |
+
from ..nn.quantize import ResidualVectorQuantize
|
16 |
+
|
17 |
+
|
18 |
+
def init_weights(m):
|
19 |
+
if isinstance(m, nn.Conv1d):
|
20 |
+
nn.init.trunc_normal_(m.weight, std=0.02)
|
21 |
+
nn.init.constant_(m.bias, 0)
|
22 |
+
|
23 |
+
|
24 |
+
class ResidualUnit(nn.Module):
|
25 |
+
def __init__(self, dim: int = 16, dilation: int = 1):
|
26 |
+
super().__init__()
|
27 |
+
pad = ((7 - 1) * dilation) // 2
|
28 |
+
self.block = nn.Sequential(
|
29 |
+
Snake1d(dim),
|
30 |
+
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
|
31 |
+
Snake1d(dim),
|
32 |
+
WNConv1d(dim, dim, kernel_size=1),
|
33 |
+
)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
y = self.block(x)
|
37 |
+
pad = (x.shape[-1] - y.shape[-1]) // 2
|
38 |
+
if pad > 0:
|
39 |
+
x = x[..., pad:-pad]
|
40 |
+
return x + y
|
41 |
+
|
42 |
+
|
43 |
+
class EncoderBlock(nn.Module):
|
44 |
+
def __init__(self, dim: int = 16, stride: int = 1):
|
45 |
+
super().__init__()
|
46 |
+
self.block = nn.Sequential(
|
47 |
+
ResidualUnit(dim // 2, dilation=1),
|
48 |
+
ResidualUnit(dim // 2, dilation=3),
|
49 |
+
ResidualUnit(dim // 2, dilation=9),
|
50 |
+
Snake1d(dim // 2),
|
51 |
+
WNConv1d(
|
52 |
+
dim // 2,
|
53 |
+
dim,
|
54 |
+
kernel_size=2 * stride,
|
55 |
+
stride=stride,
|
56 |
+
padding=math.ceil(stride / 2),
|
57 |
+
),
|
58 |
+
)
|
59 |
+
|
60 |
+
def forward(self, x):
|
61 |
+
return self.block(x)
|
62 |
+
|
63 |
+
|
64 |
+
class Encoder(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
d_model: int = 64,
|
68 |
+
strides: list = [2, 4, 8, 8],
|
69 |
+
d_latent: int = 64,
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
# Create first convolution
|
73 |
+
self.block = [WNConv1d(1, d_model, kernel_size=7, padding=3)]
|
74 |
+
|
75 |
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
76 |
+
for stride in strides:
|
77 |
+
d_model *= 2
|
78 |
+
self.block += [EncoderBlock(d_model, stride=stride)]
|
79 |
+
|
80 |
+
# Create last convolution
|
81 |
+
self.block += [
|
82 |
+
Snake1d(d_model),
|
83 |
+
WNConv1d(d_model, d_latent, kernel_size=3, padding=1),
|
84 |
+
]
|
85 |
+
|
86 |
+
# Wrap black into nn.Sequential
|
87 |
+
self.block = nn.Sequential(*self.block)
|
88 |
+
self.enc_dim = d_model
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
return self.block(x)
|
92 |
+
|
93 |
+
|
94 |
+
class DecoderBlock(nn.Module):
|
95 |
+
def __init__(self, input_dim: int = 16, output_dim: int = 8, stride: int = 1):
|
96 |
+
super().__init__()
|
97 |
+
self.block = nn.Sequential(
|
98 |
+
Snake1d(input_dim),
|
99 |
+
WNConvTranspose1d(
|
100 |
+
input_dim,
|
101 |
+
output_dim,
|
102 |
+
kernel_size=2 * stride,
|
103 |
+
stride=stride,
|
104 |
+
padding=math.ceil(stride / 2),
|
105 |
+
),
|
106 |
+
ResidualUnit(output_dim, dilation=1),
|
107 |
+
ResidualUnit(output_dim, dilation=3),
|
108 |
+
ResidualUnit(output_dim, dilation=9),
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
return self.block(x)
|
113 |
+
|
114 |
+
|
115 |
+
class Decoder(nn.Module):
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
input_channel,
|
119 |
+
channels,
|
120 |
+
rates,
|
121 |
+
d_out: int = 1,
|
122 |
+
):
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
# Add first conv layer
|
126 |
+
layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)]
|
127 |
+
|
128 |
+
# Add upsampling + MRF blocks
|
129 |
+
for i, stride in enumerate(rates):
|
130 |
+
input_dim = channels // 2**i
|
131 |
+
output_dim = channels // 2 ** (i + 1)
|
132 |
+
layers += [DecoderBlock(input_dim, output_dim, stride)]
|
133 |
+
|
134 |
+
# Add final conv layer
|
135 |
+
layers += [
|
136 |
+
Snake1d(output_dim),
|
137 |
+
WNConv1d(output_dim, d_out, kernel_size=7, padding=3),
|
138 |
+
nn.Tanh(),
|
139 |
+
]
|
140 |
+
|
141 |
+
self.model = nn.Sequential(*layers)
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
return self.model(x)
|
145 |
+
|
146 |
+
|
147 |
+
class DAC(BaseModel, CodecMixin):
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
encoder_dim: int = 64,
|
151 |
+
encoder_rates: List[int] = [2, 4, 8, 8],
|
152 |
+
latent_dim: int = None,
|
153 |
+
decoder_dim: int = 1536,
|
154 |
+
decoder_rates: List[int] = [8, 8, 4, 2],
|
155 |
+
n_codebooks: int = 9,
|
156 |
+
codebook_size: int = 1024,
|
157 |
+
codebook_dim: Union[int, list] = 8,
|
158 |
+
quantizer_dropout: bool = False,
|
159 |
+
sample_rate: int = 44100,
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
|
163 |
+
self.encoder_dim = encoder_dim
|
164 |
+
self.encoder_rates = encoder_rates
|
165 |
+
self.decoder_dim = decoder_dim
|
166 |
+
self.decoder_rates = decoder_rates
|
167 |
+
self.sample_rate = sample_rate
|
168 |
+
|
169 |
+
if latent_dim is None:
|
170 |
+
latent_dim = encoder_dim * (2 ** len(encoder_rates))
|
171 |
+
|
172 |
+
self.latent_dim = latent_dim
|
173 |
+
|
174 |
+
self.hop_length = np.prod(encoder_rates)
|
175 |
+
self.encoder = Encoder(encoder_dim, encoder_rates, latent_dim)
|
176 |
+
|
177 |
+
self.n_codebooks = n_codebooks
|
178 |
+
self.codebook_size = codebook_size
|
179 |
+
self.codebook_dim = codebook_dim
|
180 |
+
self.quantizer = ResidualVectorQuantize(
|
181 |
+
input_dim=latent_dim,
|
182 |
+
n_codebooks=n_codebooks,
|
183 |
+
codebook_size=codebook_size,
|
184 |
+
codebook_dim=codebook_dim,
|
185 |
+
quantizer_dropout=quantizer_dropout,
|
186 |
+
)
|
187 |
+
|
188 |
+
self.decoder = Decoder(
|
189 |
+
latent_dim,
|
190 |
+
decoder_dim,
|
191 |
+
decoder_rates,
|
192 |
+
)
|
193 |
+
self.sample_rate = sample_rate
|
194 |
+
self.apply(init_weights)
|
195 |
+
|
196 |
+
self.delay = self.get_delay()
|
197 |
+
|
198 |
+
def preprocess(self, audio_data, sample_rate):
|
199 |
+
if sample_rate is None:
|
200 |
+
sample_rate = self.sample_rate
|
201 |
+
assert sample_rate == self.sample_rate
|
202 |
+
|
203 |
+
length = audio_data.shape[-1]
|
204 |
+
right_pad = math.ceil(length / self.hop_length) * self.hop_length - length
|
205 |
+
audio_data = nn.functional.pad(audio_data, (0, right_pad))
|
206 |
+
|
207 |
+
return audio_data
|
208 |
+
|
209 |
+
def encode(
|
210 |
+
self,
|
211 |
+
audio_data: torch.Tensor,
|
212 |
+
n_quantizers: int = None,
|
213 |
+
):
|
214 |
+
"""Encode given audio data and return quantized latent codes
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
audio_data : Tensor[B x 1 x T]
|
219 |
+
Audio data to encode
|
220 |
+
n_quantizers : int, optional
|
221 |
+
Number of quantizers to use, by default None
|
222 |
+
If None, all quantizers are used.
|
223 |
+
|
224 |
+
Returns
|
225 |
+
-------
|
226 |
+
dict
|
227 |
+
A dictionary with the following keys:
|
228 |
+
"z" : Tensor[B x D x T]
|
229 |
+
Quantized continuous representation of input
|
230 |
+
"codes" : Tensor[B x N x T]
|
231 |
+
Codebook indices for each codebook
|
232 |
+
(quantized discrete representation of input)
|
233 |
+
"latents" : Tensor[B x N*D x T]
|
234 |
+
Projected latents (continuous representation of input before quantization)
|
235 |
+
"vq/commitment_loss" : Tensor[1]
|
236 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
237 |
+
entries
|
238 |
+
"vq/codebook_loss" : Tensor[1]
|
239 |
+
Codebook loss to update the codebook
|
240 |
+
"length" : int
|
241 |
+
Number of samples in input audio
|
242 |
+
"""
|
243 |
+
z = self.encoder(audio_data)
|
244 |
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(
|
245 |
+
z, n_quantizers
|
246 |
+
)
|
247 |
+
return z, codes, latents, commitment_loss, codebook_loss
|
248 |
+
|
249 |
+
def decode(self, z: torch.Tensor):
|
250 |
+
"""Decode given latent codes and return audio data
|
251 |
+
|
252 |
+
Parameters
|
253 |
+
----------
|
254 |
+
z : Tensor[B x D x T]
|
255 |
+
Quantized continuous representation of input
|
256 |
+
length : int, optional
|
257 |
+
Number of samples in output audio, by default None
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
dict
|
262 |
+
A dictionary with the following keys:
|
263 |
+
"audio" : Tensor[B x 1 x length]
|
264 |
+
Decoded audio data.
|
265 |
+
"""
|
266 |
+
return self.decoder(z)
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
audio_data: torch.Tensor,
|
271 |
+
sample_rate: int = None,
|
272 |
+
n_quantizers: int = None,
|
273 |
+
):
|
274 |
+
"""Model forward pass
|
275 |
+
|
276 |
+
Parameters
|
277 |
+
----------
|
278 |
+
audio_data : Tensor[B x 1 x T]
|
279 |
+
Audio data to encode
|
280 |
+
sample_rate : int, optional
|
281 |
+
Sample rate of audio data in Hz, by default None
|
282 |
+
If None, defaults to `self.sample_rate`
|
283 |
+
n_quantizers : int, optional
|
284 |
+
Number of quantizers to use, by default None.
|
285 |
+
If None, all quantizers are used.
|
286 |
+
|
287 |
+
Returns
|
288 |
+
-------
|
289 |
+
dict
|
290 |
+
A dictionary with the following keys:
|
291 |
+
"z" : Tensor[B x D x T]
|
292 |
+
Quantized continuous representation of input
|
293 |
+
"codes" : Tensor[B x N x T]
|
294 |
+
Codebook indices for each codebook
|
295 |
+
(quantized discrete representation of input)
|
296 |
+
"latents" : Tensor[B x N*D x T]
|
297 |
+
Projected latents (continuous representation of input before quantization)
|
298 |
+
"vq/commitment_loss" : Tensor[1]
|
299 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
300 |
+
entries
|
301 |
+
"vq/codebook_loss" : Tensor[1]
|
302 |
+
Codebook loss to update the codebook
|
303 |
+
"length" : int
|
304 |
+
Number of samples in input audio
|
305 |
+
"audio" : Tensor[B x 1 x length]
|
306 |
+
Decoded audio data.
|
307 |
+
"""
|
308 |
+
length = audio_data.shape[-1]
|
309 |
+
audio_data = self.preprocess(audio_data, sample_rate)
|
310 |
+
z, codes, latents, commitment_loss, codebook_loss = self.encode(
|
311 |
+
audio_data, n_quantizers
|
312 |
+
)
|
313 |
+
|
314 |
+
x = self.decode(z)
|
315 |
+
return {
|
316 |
+
"audio": x[..., :length],
|
317 |
+
"z": z,
|
318 |
+
"codes": codes,
|
319 |
+
"latents": latents,
|
320 |
+
"vq/commitment_loss": commitment_loss,
|
321 |
+
"vq/codebook_loss": codebook_loss,
|
322 |
+
}
|
323 |
+
|
324 |
+
|
325 |
+
if __name__ == "__main__":
|
326 |
+
import numpy as np
|
327 |
+
from functools import partial
|
328 |
+
|
329 |
+
model = DAC().to("cpu")
|
330 |
+
|
331 |
+
for n, m in model.named_modules():
|
332 |
+
o = m.extra_repr()
|
333 |
+
p = sum([np.prod(p.size()) for p in m.parameters()])
|
334 |
+
fn = lambda o, p: o + f" {p/1e6:<.3f}M params."
|
335 |
+
setattr(m, "extra_repr", partial(fn, o=o, p=p))
|
336 |
+
print(model)
|
337 |
+
print("Total # of params: ", sum([np.prod(p.size()) for p in model.parameters()]))
|
338 |
+
|
339 |
+
length = 88200 * 2
|
340 |
+
x = torch.randn(1, 1, length).to(model.device)
|
341 |
+
x.requires_grad_(True)
|
342 |
+
x.retain_grad()
|
343 |
+
|
344 |
+
# Make a forward pass
|
345 |
+
out = model(x)["audio"]
|
346 |
+
print("Input shape:", x.shape)
|
347 |
+
print("Output shape:", out.shape)
|
348 |
+
|
349 |
+
# Create gradient variable
|
350 |
+
grad = torch.zeros_like(out)
|
351 |
+
grad[:, :, grad.shape[-1] // 2] = 1
|
352 |
+
|
353 |
+
# Make a backward pass
|
354 |
+
out.backward(grad)
|
355 |
+
|
356 |
+
# Check non-zero values
|
357 |
+
gradmap = x.grad.squeeze(0)
|
358 |
+
gradmap = (gradmap != 0).sum(0) # sum across features
|
359 |
+
rf = (gradmap != 0).sum()
|
360 |
+
|
361 |
+
print(f"Receptive field: {rf.item()}")
|
362 |
+
|
363 |
+
x = AudioSignal(torch.randn(1, 1, 44100 * 60), 44100)
|
364 |
+
model.decompress(model.compress(x, verbose=True), verbose=True)
|
vae_modules/dac/model/discriminator.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from audiotools import AudioSignal
|
5 |
+
from audiotools import ml
|
6 |
+
from audiotools import STFTParams
|
7 |
+
from einops import rearrange
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
+
|
11 |
+
def WNConv1d(*args, **kwargs):
|
12 |
+
act = kwargs.pop("act", True)
|
13 |
+
conv = weight_norm(nn.Conv1d(*args, **kwargs))
|
14 |
+
if not act:
|
15 |
+
return conv
|
16 |
+
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
17 |
+
|
18 |
+
|
19 |
+
def WNConv2d(*args, **kwargs):
|
20 |
+
act = kwargs.pop("act", True)
|
21 |
+
conv = weight_norm(nn.Conv2d(*args, **kwargs))
|
22 |
+
if not act:
|
23 |
+
return conv
|
24 |
+
return nn.Sequential(conv, nn.LeakyReLU(0.1))
|
25 |
+
|
26 |
+
|
27 |
+
class MPD(nn.Module):
|
28 |
+
def __init__(self, period):
|
29 |
+
super().__init__()
|
30 |
+
self.period = period
|
31 |
+
self.convs = nn.ModuleList(
|
32 |
+
[
|
33 |
+
WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
|
34 |
+
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
|
35 |
+
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
|
36 |
+
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
|
37 |
+
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
|
38 |
+
]
|
39 |
+
)
|
40 |
+
self.conv_post = WNConv2d(
|
41 |
+
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
|
42 |
+
)
|
43 |
+
|
44 |
+
def pad_to_period(self, x):
|
45 |
+
t = x.shape[-1]
|
46 |
+
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
|
47 |
+
return x
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
fmap = []
|
51 |
+
|
52 |
+
x = self.pad_to_period(x)
|
53 |
+
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
|
54 |
+
|
55 |
+
for layer in self.convs:
|
56 |
+
x = layer(x)
|
57 |
+
fmap.append(x)
|
58 |
+
|
59 |
+
x = self.conv_post(x)
|
60 |
+
fmap.append(x)
|
61 |
+
|
62 |
+
return fmap
|
63 |
+
|
64 |
+
|
65 |
+
class MSD(nn.Module):
|
66 |
+
def __init__(self, rate: int = 1, sample_rate: int = 44100):
|
67 |
+
super().__init__()
|
68 |
+
self.convs = nn.ModuleList(
|
69 |
+
[
|
70 |
+
WNConv1d(1, 16, 15, 1, padding=7),
|
71 |
+
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
|
72 |
+
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
|
73 |
+
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
|
74 |
+
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
|
75 |
+
WNConv1d(1024, 1024, 5, 1, padding=2),
|
76 |
+
]
|
77 |
+
)
|
78 |
+
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
|
79 |
+
self.sample_rate = sample_rate
|
80 |
+
self.rate = rate
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
x = AudioSignal(x, self.sample_rate)
|
84 |
+
x.resample(self.sample_rate // self.rate)
|
85 |
+
x = x.audio_data
|
86 |
+
|
87 |
+
fmap = []
|
88 |
+
|
89 |
+
for l in self.convs:
|
90 |
+
x = l(x)
|
91 |
+
fmap.append(x)
|
92 |
+
x = self.conv_post(x)
|
93 |
+
fmap.append(x)
|
94 |
+
|
95 |
+
return fmap
|
96 |
+
|
97 |
+
|
98 |
+
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
|
99 |
+
|
100 |
+
|
101 |
+
class MRD(nn.Module):
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
window_length: int,
|
105 |
+
hop_factor: float = 0.25,
|
106 |
+
sample_rate: int = 44100,
|
107 |
+
bands: list = BANDS,
|
108 |
+
):
|
109 |
+
"""Complex multi-band spectrogram discriminator.
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
window_length : int
|
113 |
+
Window length of STFT.
|
114 |
+
hop_factor : float, optional
|
115 |
+
Hop factor of the STFT, defaults to ``0.25 * window_length``.
|
116 |
+
sample_rate : int, optional
|
117 |
+
Sampling rate of audio in Hz, by default 44100
|
118 |
+
bands : list, optional
|
119 |
+
Bands to run discriminator over.
|
120 |
+
"""
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.window_length = window_length
|
124 |
+
self.hop_factor = hop_factor
|
125 |
+
self.sample_rate = sample_rate
|
126 |
+
self.stft_params = STFTParams(
|
127 |
+
window_length=window_length,
|
128 |
+
hop_length=int(window_length * hop_factor),
|
129 |
+
match_stride=True,
|
130 |
+
)
|
131 |
+
|
132 |
+
n_fft = window_length // 2 + 1
|
133 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
134 |
+
self.bands = bands
|
135 |
+
|
136 |
+
ch = 32
|
137 |
+
convs = lambda: nn.ModuleList(
|
138 |
+
[
|
139 |
+
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
|
140 |
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
141 |
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
142 |
+
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
143 |
+
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
|
144 |
+
]
|
145 |
+
)
|
146 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
147 |
+
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
|
148 |
+
|
149 |
+
def spectrogram(self, x):
|
150 |
+
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
|
151 |
+
x = torch.view_as_real(x.stft())
|
152 |
+
x = rearrange(x, "b 1 f t c -> (b 1) c t f")
|
153 |
+
# Split into bands
|
154 |
+
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
155 |
+
return x_bands
|
156 |
+
|
157 |
+
def forward(self, x):
|
158 |
+
x_bands = self.spectrogram(x)
|
159 |
+
fmap = []
|
160 |
+
|
161 |
+
x = []
|
162 |
+
for band, stack in zip(x_bands, self.band_convs):
|
163 |
+
for layer in stack:
|
164 |
+
band = layer(band)
|
165 |
+
fmap.append(band)
|
166 |
+
x.append(band)
|
167 |
+
|
168 |
+
x = torch.cat(x, dim=-1)
|
169 |
+
x = self.conv_post(x)
|
170 |
+
fmap.append(x)
|
171 |
+
|
172 |
+
return fmap
|
173 |
+
|
174 |
+
|
175 |
+
class Discriminator(ml.BaseModel):
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
rates: list = [],
|
179 |
+
periods: list = [2, 3, 5, 7, 11],
|
180 |
+
fft_sizes: list = [2048, 1024, 512],
|
181 |
+
sample_rate: int = 44100,
|
182 |
+
bands: list = BANDS,
|
183 |
+
):
|
184 |
+
"""Discriminator that combines multiple discriminators.
|
185 |
+
|
186 |
+
Parameters
|
187 |
+
----------
|
188 |
+
rates : list, optional
|
189 |
+
sampling rates (in Hz) to run MSD at, by default []
|
190 |
+
If empty, MSD is not used.
|
191 |
+
periods : list, optional
|
192 |
+
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
|
193 |
+
fft_sizes : list, optional
|
194 |
+
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
|
195 |
+
sample_rate : int, optional
|
196 |
+
Sampling rate of audio in Hz, by default 44100
|
197 |
+
bands : list, optional
|
198 |
+
Bands to run MRD at, by default `BANDS`
|
199 |
+
"""
|
200 |
+
super().__init__()
|
201 |
+
discs = []
|
202 |
+
discs += [MPD(p) for p in periods]
|
203 |
+
discs += [MSD(r, sample_rate=sample_rate) for r in rates]
|
204 |
+
discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
|
205 |
+
self.discriminators = nn.ModuleList(discs)
|
206 |
+
|
207 |
+
def preprocess(self, y):
|
208 |
+
# Remove DC offset
|
209 |
+
y = y - y.mean(dim=-1, keepdims=True)
|
210 |
+
# Peak normalize the volume of input audio
|
211 |
+
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
212 |
+
return y
|
213 |
+
|
214 |
+
def forward(self, x):
|
215 |
+
x = self.preprocess(x)
|
216 |
+
fmaps = [d(x) for d in self.discriminators]
|
217 |
+
return fmaps
|
218 |
+
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
disc = Discriminator()
|
222 |
+
x = torch.zeros(1, 1, 44100)
|
223 |
+
results = disc(x)
|
224 |
+
for i, result in enumerate(results):
|
225 |
+
print(f"disc{i}")
|
226 |
+
for i, r in enumerate(result):
|
227 |
+
print(r.shape, r.mean(), r.min(), r.max())
|
228 |
+
print()
|
vae_modules/dac/nn/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import layers
|
2 |
+
from . import loss
|
3 |
+
from . import quantize
|
vae_modules/dac/nn/layers.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange
|
6 |
+
from torch.nn.utils import weight_norm
|
7 |
+
|
8 |
+
|
9 |
+
def WNConv1d(*args, **kwargs):
|
10 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
11 |
+
|
12 |
+
|
13 |
+
def WNConvTranspose1d(*args, **kwargs):
|
14 |
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
15 |
+
|
16 |
+
|
17 |
+
# Scripting this brings model speed up 1.4x
|
18 |
+
@torch.jit.script
|
19 |
+
def snake(x, alpha):
|
20 |
+
shape = x.shape
|
21 |
+
x = x.reshape(shape[0], shape[1], -1)
|
22 |
+
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
|
23 |
+
x = x.reshape(shape)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
class Snake1d(nn.Module):
|
28 |
+
def __init__(self, channels):
|
29 |
+
super().__init__()
|
30 |
+
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return snake(x, self.alpha)
|
vae_modules/dac/nn/loss.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from audiotools import AudioSignal
|
7 |
+
from audiotools import STFTParams
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
|
11 |
+
class L1Loss(nn.L1Loss):
|
12 |
+
"""L1 Loss between AudioSignals. Defaults
|
13 |
+
to comparing ``audio_data``, but any
|
14 |
+
attribute of an AudioSignal can be used.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
attribute : str, optional
|
19 |
+
Attribute of signal to compare, defaults to ``audio_data``.
|
20 |
+
weight : float, optional
|
21 |
+
Weight of this loss, defaults to 1.0.
|
22 |
+
|
23 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
|
27 |
+
self.attribute = attribute
|
28 |
+
self.weight = weight
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
|
31 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
32 |
+
"""
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
x : AudioSignal
|
36 |
+
Estimate AudioSignal
|
37 |
+
y : AudioSignal
|
38 |
+
Reference AudioSignal
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
torch.Tensor
|
43 |
+
L1 loss between AudioSignal attributes.
|
44 |
+
"""
|
45 |
+
if isinstance(x, AudioSignal):
|
46 |
+
x = getattr(x, self.attribute)
|
47 |
+
y = getattr(y, self.attribute)
|
48 |
+
return super().forward(x, y)
|
49 |
+
|
50 |
+
|
51 |
+
class SISDRLoss(nn.Module):
|
52 |
+
"""
|
53 |
+
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
|
54 |
+
of estimated and reference audio signals or aligned features.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
scaling : int, optional
|
59 |
+
Whether to use scale-invariant (True) or
|
60 |
+
signal-to-noise ratio (False), by default True
|
61 |
+
reduction : str, optional
|
62 |
+
How to reduce across the batch (either 'mean',
|
63 |
+
'sum', or none).], by default ' mean'
|
64 |
+
zero_mean : int, optional
|
65 |
+
Zero mean the references and estimates before
|
66 |
+
computing the loss, by default True
|
67 |
+
clip_min : int, optional
|
68 |
+
The minimum possible loss value. Helps network
|
69 |
+
to not focus on making already good examples better, by default None
|
70 |
+
weight : float, optional
|
71 |
+
Weight of this loss, defaults to 1.0.
|
72 |
+
|
73 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
scaling: int = True,
|
79 |
+
reduction: str = "mean",
|
80 |
+
zero_mean: int = True,
|
81 |
+
clip_min: int = None,
|
82 |
+
weight: float = 1.0,
|
83 |
+
):
|
84 |
+
self.scaling = scaling
|
85 |
+
self.reduction = reduction
|
86 |
+
self.zero_mean = zero_mean
|
87 |
+
self.clip_min = clip_min
|
88 |
+
self.weight = weight
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
92 |
+
eps = 1e-8
|
93 |
+
# nb, nc, nt
|
94 |
+
if isinstance(x, AudioSignal):
|
95 |
+
references = x.audio_data
|
96 |
+
estimates = y.audio_data
|
97 |
+
else:
|
98 |
+
references = x
|
99 |
+
estimates = y
|
100 |
+
|
101 |
+
nb = references.shape[0]
|
102 |
+
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
|
103 |
+
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
|
104 |
+
|
105 |
+
# samples now on axis 1
|
106 |
+
if self.zero_mean:
|
107 |
+
mean_reference = references.mean(dim=1, keepdim=True)
|
108 |
+
mean_estimate = estimates.mean(dim=1, keepdim=True)
|
109 |
+
else:
|
110 |
+
mean_reference = 0
|
111 |
+
mean_estimate = 0
|
112 |
+
|
113 |
+
_references = references - mean_reference
|
114 |
+
_estimates = estimates - mean_estimate
|
115 |
+
|
116 |
+
references_projection = (_references**2).sum(dim=-2) + eps
|
117 |
+
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
|
118 |
+
|
119 |
+
scale = (
|
120 |
+
(references_on_estimates / references_projection).unsqueeze(1)
|
121 |
+
if self.scaling
|
122 |
+
else 1
|
123 |
+
)
|
124 |
+
|
125 |
+
e_true = scale * _references
|
126 |
+
e_res = _estimates - e_true
|
127 |
+
|
128 |
+
signal = (e_true**2).sum(dim=1)
|
129 |
+
noise = (e_res**2).sum(dim=1)
|
130 |
+
sdr = -10 * torch.log10(signal / noise + eps)
|
131 |
+
|
132 |
+
if self.clip_min is not None:
|
133 |
+
sdr = torch.clamp(sdr, min=self.clip_min)
|
134 |
+
|
135 |
+
if self.reduction == "mean":
|
136 |
+
sdr = sdr.mean()
|
137 |
+
elif self.reduction == "sum":
|
138 |
+
sdr = sdr.sum()
|
139 |
+
return sdr
|
140 |
+
|
141 |
+
|
142 |
+
class MultiScaleSTFTLoss(nn.Module):
|
143 |
+
"""Computes the multi-scale STFT loss from [1].
|
144 |
+
|
145 |
+
Parameters
|
146 |
+
----------
|
147 |
+
window_lengths : List[int], optional
|
148 |
+
Length of each window of each STFT, by default [2048, 512]
|
149 |
+
loss_fn : typing.Callable, optional
|
150 |
+
How to compare each loss, by default nn.L1Loss()
|
151 |
+
clamp_eps : float, optional
|
152 |
+
Clamp on the log magnitude, below, by default 1e-5
|
153 |
+
mag_weight : float, optional
|
154 |
+
Weight of raw magnitude portion of loss, by default 1.0
|
155 |
+
log_weight : float, optional
|
156 |
+
Weight of log magnitude portion of loss, by default 1.0
|
157 |
+
pow : float, optional
|
158 |
+
Power to raise magnitude to before taking log, by default 2.0
|
159 |
+
weight : float, optional
|
160 |
+
Weight of this loss, by default 1.0
|
161 |
+
match_stride : bool, optional
|
162 |
+
Whether to match the stride of convolutional layers, by default False
|
163 |
+
|
164 |
+
References
|
165 |
+
----------
|
166 |
+
|
167 |
+
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
|
168 |
+
"DDSP: Differentiable Digital Signal Processing."
|
169 |
+
International Conference on Learning Representations. 2019.
|
170 |
+
|
171 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
window_lengths: List[int] = [2048, 512],
|
177 |
+
loss_fn: typing.Callable = nn.L1Loss(),
|
178 |
+
clamp_eps: float = 1e-5,
|
179 |
+
mag_weight: float = 1.0,
|
180 |
+
log_weight: float = 1.0,
|
181 |
+
pow: float = 2.0,
|
182 |
+
weight: float = 1.0,
|
183 |
+
match_stride: bool = False,
|
184 |
+
window_type: str = None,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
self.stft_params = [
|
188 |
+
STFTParams(
|
189 |
+
window_length=w,
|
190 |
+
hop_length=w // 4,
|
191 |
+
match_stride=match_stride,
|
192 |
+
window_type=window_type,
|
193 |
+
)
|
194 |
+
for w in window_lengths
|
195 |
+
]
|
196 |
+
self.loss_fn = loss_fn
|
197 |
+
self.log_weight = log_weight
|
198 |
+
self.mag_weight = mag_weight
|
199 |
+
self.clamp_eps = clamp_eps
|
200 |
+
self.weight = weight
|
201 |
+
self.pow = pow
|
202 |
+
|
203 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
204 |
+
"""Computes multi-scale STFT between an estimate and a reference
|
205 |
+
signal.
|
206 |
+
|
207 |
+
Parameters
|
208 |
+
----------
|
209 |
+
x : AudioSignal
|
210 |
+
Estimate signal
|
211 |
+
y : AudioSignal
|
212 |
+
Reference signal
|
213 |
+
|
214 |
+
Returns
|
215 |
+
-------
|
216 |
+
torch.Tensor
|
217 |
+
Multi-scale STFT loss.
|
218 |
+
"""
|
219 |
+
loss = 0.0
|
220 |
+
for s in self.stft_params:
|
221 |
+
x.stft(s.window_length, s.hop_length, s.window_type)
|
222 |
+
y.stft(s.window_length, s.hop_length, s.window_type)
|
223 |
+
loss += self.log_weight * self.loss_fn(
|
224 |
+
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
225 |
+
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
226 |
+
)
|
227 |
+
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
|
228 |
+
return loss
|
229 |
+
|
230 |
+
|
231 |
+
class MelSpectrogramLoss(nn.Module):
|
232 |
+
"""Compute distance between mel spectrograms. Can be used
|
233 |
+
in a multi-scale way.
|
234 |
+
|
235 |
+
Parameters
|
236 |
+
----------
|
237 |
+
n_mels : List[int]
|
238 |
+
Number of mels per STFT, by default [150, 80],
|
239 |
+
window_lengths : List[int], optional
|
240 |
+
Length of each window of each STFT, by default [2048, 512]
|
241 |
+
loss_fn : typing.Callable, optional
|
242 |
+
How to compare each loss, by default nn.L1Loss()
|
243 |
+
clamp_eps : float, optional
|
244 |
+
Clamp on the log magnitude, below, by default 1e-5
|
245 |
+
mag_weight : float, optional
|
246 |
+
Weight of raw magnitude portion of loss, by default 1.0
|
247 |
+
log_weight : float, optional
|
248 |
+
Weight of log magnitude portion of loss, by default 1.0
|
249 |
+
pow : float, optional
|
250 |
+
Power to raise magnitude to before taking log, by default 2.0
|
251 |
+
weight : float, optional
|
252 |
+
Weight of this loss, by default 1.0
|
253 |
+
match_stride : bool, optional
|
254 |
+
Whether to match the stride of convolutional layers, by default False
|
255 |
+
|
256 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
257 |
+
"""
|
258 |
+
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
n_mels: List[int] = [150, 80],
|
262 |
+
window_lengths: List[int] = [2048, 512],
|
263 |
+
loss_fn: typing.Callable = nn.L1Loss(),
|
264 |
+
clamp_eps: float = 1e-5,
|
265 |
+
mag_weight: float = 1.0,
|
266 |
+
log_weight: float = 1.0,
|
267 |
+
pow: float = 2.0,
|
268 |
+
weight: float = 1.0,
|
269 |
+
match_stride: bool = False,
|
270 |
+
mel_fmin: List[float] = [0.0, 0.0],
|
271 |
+
mel_fmax: List[float] = [None, None],
|
272 |
+
window_type: str = None,
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
self.stft_params = [
|
276 |
+
STFTParams(
|
277 |
+
window_length=w,
|
278 |
+
hop_length=w // 4,
|
279 |
+
match_stride=match_stride,
|
280 |
+
window_type=window_type,
|
281 |
+
)
|
282 |
+
for w in window_lengths
|
283 |
+
]
|
284 |
+
self.n_mels = n_mels
|
285 |
+
self.loss_fn = loss_fn
|
286 |
+
self.clamp_eps = clamp_eps
|
287 |
+
self.log_weight = log_weight
|
288 |
+
self.mag_weight = mag_weight
|
289 |
+
self.weight = weight
|
290 |
+
self.mel_fmin = mel_fmin
|
291 |
+
self.mel_fmax = mel_fmax
|
292 |
+
self.pow = pow
|
293 |
+
|
294 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
295 |
+
"""Computes mel loss between an estimate and a reference
|
296 |
+
signal.
|
297 |
+
|
298 |
+
Parameters
|
299 |
+
----------
|
300 |
+
x : AudioSignal
|
301 |
+
Estimate signal
|
302 |
+
y : AudioSignal
|
303 |
+
Reference signal
|
304 |
+
|
305 |
+
Returns
|
306 |
+
-------
|
307 |
+
torch.Tensor
|
308 |
+
Mel loss.
|
309 |
+
"""
|
310 |
+
loss = 0.0
|
311 |
+
for n_mels, fmin, fmax, s in zip(
|
312 |
+
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
313 |
+
):
|
314 |
+
kwargs = {
|
315 |
+
"window_length": s.window_length,
|
316 |
+
"hop_length": s.hop_length,
|
317 |
+
"window_type": s.window_type,
|
318 |
+
}
|
319 |
+
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
320 |
+
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
321 |
+
|
322 |
+
loss += self.log_weight * self.loss_fn(
|
323 |
+
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
324 |
+
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
325 |
+
)
|
326 |
+
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
|
327 |
+
return loss
|
328 |
+
|
329 |
+
|
330 |
+
class GANLoss(nn.Module):
|
331 |
+
"""
|
332 |
+
Computes a discriminator loss, given a discriminator on
|
333 |
+
generated waveforms/spectrograms compared to ground truth
|
334 |
+
waveforms/spectrograms. Computes the loss for both the
|
335 |
+
discriminator and the generator in separate functions.
|
336 |
+
"""
|
337 |
+
|
338 |
+
def __init__(self, discriminator):
|
339 |
+
super().__init__()
|
340 |
+
self.discriminator = discriminator
|
341 |
+
|
342 |
+
def forward(self, fake, real):
|
343 |
+
d_fake = self.discriminator(fake.audio_data)
|
344 |
+
d_real = self.discriminator(real.audio_data)
|
345 |
+
return d_fake, d_real
|
346 |
+
|
347 |
+
def discriminator_loss(self, fake, real):
|
348 |
+
d_fake, d_real = self.forward(fake.clone().detach(), real)
|
349 |
+
|
350 |
+
loss_d = 0
|
351 |
+
for x_fake, x_real in zip(d_fake, d_real):
|
352 |
+
loss_d += torch.mean(x_fake[-1] ** 2)
|
353 |
+
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
354 |
+
return loss_d
|
355 |
+
|
356 |
+
def generator_loss(self, fake, real):
|
357 |
+
d_fake, d_real = self.forward(fake, real)
|
358 |
+
|
359 |
+
loss_g = 0
|
360 |
+
for x_fake in d_fake:
|
361 |
+
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
362 |
+
|
363 |
+
loss_feature = 0
|
364 |
+
|
365 |
+
for i in range(len(d_fake)):
|
366 |
+
for j in range(len(d_fake[i]) - 1):
|
367 |
+
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
368 |
+
return loss_g, loss_feature
|
vae_modules/dac/nn/quantize.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
+
from .layers import WNConv1d
|
11 |
+
|
12 |
+
|
13 |
+
class VectorQuantize(nn.Module):
|
14 |
+
"""
|
15 |
+
Implementation of VQ similar to Karpathy's repo:
|
16 |
+
https://github.com/karpathy/deep-vector-quantization
|
17 |
+
Additionally uses following tricks from Improved VQGAN
|
18 |
+
(https://arxiv.org/pdf/2110.04627.pdf):
|
19 |
+
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
|
20 |
+
for improved codebook usage
|
21 |
+
2. l2-normalized codes: Converts euclidean distance to cosine similarity which
|
22 |
+
improves training stability
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
|
26 |
+
super().__init__()
|
27 |
+
self.codebook_size = codebook_size
|
28 |
+
self.codebook_dim = codebook_dim
|
29 |
+
|
30 |
+
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
|
31 |
+
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
|
32 |
+
self.codebook = nn.Embedding(codebook_size, codebook_dim)
|
33 |
+
|
34 |
+
def forward(self, z):
|
35 |
+
"""Quantized the input tensor using a fixed codebook and returns
|
36 |
+
the corresponding codebook vectors
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
z : Tensor[B x D x T]
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
Tensor[B x D x T]
|
45 |
+
Quantized continuous representation of input
|
46 |
+
Tensor[1]
|
47 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
48 |
+
entries
|
49 |
+
Tensor[1]
|
50 |
+
Codebook loss to update the codebook
|
51 |
+
Tensor[B x T]
|
52 |
+
Codebook indices (quantized discrete representation of input)
|
53 |
+
Tensor[B x D x T]
|
54 |
+
Projected latents (continuous representation of input before quantization)
|
55 |
+
"""
|
56 |
+
|
57 |
+
# Factorized codes (ViT-VQGAN) Project input into low-dimensional space
|
58 |
+
z_e = self.in_proj(z) # z_e : (B x D x T)
|
59 |
+
z_q, indices = self.decode_latents(z_e)
|
60 |
+
|
61 |
+
commitment_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
|
62 |
+
codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
|
63 |
+
|
64 |
+
z_q = (
|
65 |
+
z_e + (z_q - z_e).detach()
|
66 |
+
) # noop in forward pass, straight-through gradient estimator in backward pass
|
67 |
+
|
68 |
+
z_q = self.out_proj(z_q)
|
69 |
+
|
70 |
+
return z_q, commitment_loss, codebook_loss, indices, z_e
|
71 |
+
|
72 |
+
def embed_code(self, embed_id):
|
73 |
+
return F.embedding(embed_id, self.codebook.weight)
|
74 |
+
|
75 |
+
def decode_code(self, embed_id):
|
76 |
+
return self.embed_code(embed_id).transpose(1, 2)
|
77 |
+
|
78 |
+
def decode_latents(self, latents):
|
79 |
+
encodings = rearrange(latents, "b d t -> (b t) d")
|
80 |
+
codebook = self.codebook.weight # codebook: (N x D)
|
81 |
+
|
82 |
+
# L2 normalize encodings and codebook (ViT-VQGAN)
|
83 |
+
encodings = F.normalize(encodings)
|
84 |
+
codebook = F.normalize(codebook)
|
85 |
+
|
86 |
+
# Compute euclidean distance with codebook
|
87 |
+
dist = (
|
88 |
+
encodings.pow(2).sum(1, keepdim=True)
|
89 |
+
- 2 * encodings @ codebook.t()
|
90 |
+
+ codebook.pow(2).sum(1, keepdim=True).t()
|
91 |
+
)
|
92 |
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
93 |
+
z_q = self.decode_code(indices)
|
94 |
+
return z_q, indices
|
95 |
+
|
96 |
+
|
97 |
+
class ResidualVectorQuantize(nn.Module):
|
98 |
+
"""
|
99 |
+
Introduced in SoundStream: An end2end neural audio codec
|
100 |
+
https://arxiv.org/abs/2107.03312
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
input_dim: int = 512,
|
106 |
+
n_codebooks: int = 9,
|
107 |
+
codebook_size: int = 1024,
|
108 |
+
codebook_dim: Union[int, list] = 8,
|
109 |
+
quantizer_dropout: float = 0.0,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
if isinstance(codebook_dim, int):
|
113 |
+
codebook_dim = [codebook_dim for _ in range(n_codebooks)]
|
114 |
+
|
115 |
+
self.n_codebooks = n_codebooks
|
116 |
+
self.codebook_dim = codebook_dim
|
117 |
+
self.codebook_size = codebook_size
|
118 |
+
|
119 |
+
self.quantizers = nn.ModuleList(
|
120 |
+
[
|
121 |
+
VectorQuantize(input_dim, codebook_size, codebook_dim[i])
|
122 |
+
for i in range(n_codebooks)
|
123 |
+
]
|
124 |
+
)
|
125 |
+
self.quantizer_dropout = quantizer_dropout
|
126 |
+
|
127 |
+
def forward(self, z, n_quantizers: int = None):
|
128 |
+
"""Quantized the input tensor using a fixed set of `n` codebooks and returns
|
129 |
+
the corresponding codebook vectors
|
130 |
+
Parameters
|
131 |
+
----------
|
132 |
+
z : Tensor[B x D x T]
|
133 |
+
n_quantizers : int, optional
|
134 |
+
No. of quantizers to use
|
135 |
+
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
|
136 |
+
Note: if `self.quantizer_dropout` is True, this argument is ignored
|
137 |
+
when in training mode, and a random number of quantizers is used.
|
138 |
+
Returns
|
139 |
+
-------
|
140 |
+
dict
|
141 |
+
A dictionary with the following keys:
|
142 |
+
|
143 |
+
"z" : Tensor[B x D x T]
|
144 |
+
Quantized continuous representation of input
|
145 |
+
"codes" : Tensor[B x N x T]
|
146 |
+
Codebook indices for each codebook
|
147 |
+
(quantized discrete representation of input)
|
148 |
+
"latents" : Tensor[B x N*D x T]
|
149 |
+
Projected latents (continuous representation of input before quantization)
|
150 |
+
"vq/commitment_loss" : Tensor[1]
|
151 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
152 |
+
entries
|
153 |
+
"vq/codebook_loss" : Tensor[1]
|
154 |
+
Codebook loss to update the codebook
|
155 |
+
"""
|
156 |
+
z_q = 0
|
157 |
+
residual = z
|
158 |
+
commitment_loss = 0
|
159 |
+
codebook_loss = 0
|
160 |
+
|
161 |
+
codebook_indices = []
|
162 |
+
latents = []
|
163 |
+
|
164 |
+
if n_quantizers is None:
|
165 |
+
n_quantizers = self.n_codebooks
|
166 |
+
if self.training:
|
167 |
+
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
|
168 |
+
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
|
169 |
+
n_dropout = int(z.shape[0] * self.quantizer_dropout)
|
170 |
+
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
171 |
+
n_quantizers = n_quantizers.to(z.device)
|
172 |
+
|
173 |
+
for i, quantizer in enumerate(self.quantizers):
|
174 |
+
if self.training is False and i >= n_quantizers:
|
175 |
+
break
|
176 |
+
|
177 |
+
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
|
178 |
+
residual
|
179 |
+
)
|
180 |
+
|
181 |
+
# Create mask to apply quantizer dropout
|
182 |
+
mask = (
|
183 |
+
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
|
184 |
+
)
|
185 |
+
z_q = z_q + z_q_i * mask[:, None, None]
|
186 |
+
residual = residual - z_q_i
|
187 |
+
|
188 |
+
# Sum losses
|
189 |
+
commitment_loss += (commitment_loss_i * mask).mean()
|
190 |
+
codebook_loss += (codebook_loss_i * mask).mean()
|
191 |
+
|
192 |
+
codebook_indices.append(indices_i)
|
193 |
+
latents.append(z_e_i)
|
194 |
+
|
195 |
+
codes = torch.stack(codebook_indices, dim=1)
|
196 |
+
latents = torch.cat(latents, dim=1)
|
197 |
+
|
198 |
+
return z_q, codes, latents, commitment_loss, codebook_loss
|
199 |
+
|
200 |
+
def from_codes(self, codes: torch.Tensor):
|
201 |
+
"""Given the quantized codes, reconstruct the continuous representation
|
202 |
+
Parameters
|
203 |
+
----------
|
204 |
+
codes : Tensor[B x N x T]
|
205 |
+
Quantized discrete representation of input
|
206 |
+
Returns
|
207 |
+
-------
|
208 |
+
Tensor[B x D x T]
|
209 |
+
Quantized continuous representation of input
|
210 |
+
"""
|
211 |
+
z_q = 0.0
|
212 |
+
z_p = []
|
213 |
+
n_codebooks = codes.shape[1]
|
214 |
+
for i in range(n_codebooks):
|
215 |
+
z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
|
216 |
+
z_p.append(z_p_i)
|
217 |
+
|
218 |
+
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
219 |
+
z_q = z_q + z_q_i
|
220 |
+
return z_q, torch.cat(z_p, dim=1), codes
|
221 |
+
|
222 |
+
def from_latents(self, latents: torch.Tensor):
|
223 |
+
"""Given the unquantized latents, reconstruct the
|
224 |
+
continuous representation after quantization.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
latents : Tensor[B x N x T]
|
229 |
+
Continuous representation of input after projection
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
Tensor[B x D x T]
|
234 |
+
Quantized representation of full-projected space
|
235 |
+
Tensor[B x D x T]
|
236 |
+
Quantized representation of latent space
|
237 |
+
"""
|
238 |
+
z_q = 0
|
239 |
+
z_p = []
|
240 |
+
codes = []
|
241 |
+
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
|
242 |
+
|
243 |
+
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
|
244 |
+
0
|
245 |
+
]
|
246 |
+
for i in range(n_codebooks):
|
247 |
+
j, k = dims[i], dims[i + 1]
|
248 |
+
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
|
249 |
+
z_p.append(z_p_i)
|
250 |
+
codes.append(codes_i)
|
251 |
+
|
252 |
+
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
253 |
+
z_q = z_q + z_q_i
|
254 |
+
|
255 |
+
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
rvq = ResidualVectorQuantize(quantizer_dropout=True)
|
260 |
+
x = torch.randn(16, 512, 80)
|
261 |
+
y = rvq(x)
|
262 |
+
print(y["latents"].shape)
|
vae_modules/dac/utils/__init__.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import argbind
|
4 |
+
from audiotools import ml
|
5 |
+
|
6 |
+
from ..model import DAC
|
7 |
+
|
8 |
+
Accelerator = ml.Accelerator
|
9 |
+
|
10 |
+
__MODEL_LATEST_TAGS__ = {
|
11 |
+
("44khz", "8kbps"): "0.0.1",
|
12 |
+
("24khz", "8kbps"): "0.0.4",
|
13 |
+
("16khz", "8kbps"): "0.0.5",
|
14 |
+
("44khz", "16kbps"): "1.0.0",
|
15 |
+
}
|
16 |
+
|
17 |
+
__MODEL_URLS__ = {
|
18 |
+
(
|
19 |
+
"44khz",
|
20 |
+
"0.0.1",
|
21 |
+
"8kbps",
|
22 |
+
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.1/weights.pth",
|
23 |
+
(
|
24 |
+
"24khz",
|
25 |
+
"0.0.4",
|
26 |
+
"8kbps",
|
27 |
+
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.4/weights_24khz.pth",
|
28 |
+
(
|
29 |
+
"16khz",
|
30 |
+
"0.0.5",
|
31 |
+
"8kbps",
|
32 |
+
): "https://github.com/descriptinc/descript-audio-codec/releases/download/0.0.5/weights_16khz.pth",
|
33 |
+
(
|
34 |
+
"44khz",
|
35 |
+
"1.0.0",
|
36 |
+
"16kbps",
|
37 |
+
): "https://github.com/descriptinc/descript-audio-codec/releases/download/1.0.0/weights_44khz_16kbps.pth",
|
38 |
+
}
|
39 |
+
|
40 |
+
|
41 |
+
@argbind.bind(group="download", positional=True, without_prefix=True)
|
42 |
+
def download(
|
43 |
+
model_type: str = "44khz", model_bitrate: str = "8kbps", tag: str = "latest"
|
44 |
+
):
|
45 |
+
"""
|
46 |
+
Function that downloads the weights file from URL if a local cache is not found.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
model_type : str
|
51 |
+
The type of model to download. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz".
|
52 |
+
model_bitrate: str
|
53 |
+
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
|
54 |
+
Only 44khz model supports 16kbps.
|
55 |
+
tag : str
|
56 |
+
The tag of the model to download. Defaults to "latest".
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
Path
|
61 |
+
Directory path required to load model via audiotools.
|
62 |
+
"""
|
63 |
+
model_type = model_type.lower()
|
64 |
+
tag = tag.lower()
|
65 |
+
|
66 |
+
assert model_type in [
|
67 |
+
"44khz",
|
68 |
+
"24khz",
|
69 |
+
"16khz",
|
70 |
+
], "model_type must be one of '44khz', '24khz', or '16khz'"
|
71 |
+
|
72 |
+
assert model_bitrate in [
|
73 |
+
"8kbps",
|
74 |
+
"16kbps",
|
75 |
+
], "model_bitrate must be one of '8kbps', or '16kbps'"
|
76 |
+
|
77 |
+
if tag == "latest":
|
78 |
+
tag = __MODEL_LATEST_TAGS__[(model_type, model_bitrate)]
|
79 |
+
|
80 |
+
download_link = __MODEL_URLS__.get((model_type, tag, model_bitrate), None)
|
81 |
+
|
82 |
+
if download_link is None:
|
83 |
+
raise ValueError(
|
84 |
+
f"Could not find model with tag {tag} and model type {model_type}"
|
85 |
+
)
|
86 |
+
|
87 |
+
local_path = (
|
88 |
+
Path.home()
|
89 |
+
/ ".cache"
|
90 |
+
/ "descript"
|
91 |
+
/ "dac"
|
92 |
+
/ f"weights_{model_type}_{model_bitrate}_{tag}.pth"
|
93 |
+
)
|
94 |
+
if not local_path.exists():
|
95 |
+
local_path.parent.mkdir(parents=True, exist_ok=True)
|
96 |
+
|
97 |
+
# Download the model
|
98 |
+
import requests
|
99 |
+
|
100 |
+
response = requests.get(download_link)
|
101 |
+
|
102 |
+
if response.status_code != 200:
|
103 |
+
raise ValueError(
|
104 |
+
f"Could not download model. Received response code {response.status_code}"
|
105 |
+
)
|
106 |
+
local_path.write_bytes(response.content)
|
107 |
+
|
108 |
+
return local_path
|
109 |
+
|
110 |
+
|
111 |
+
def load_model(
|
112 |
+
model_type: str = "44khz",
|
113 |
+
model_bitrate: str = "8kbps",
|
114 |
+
tag: str = "latest",
|
115 |
+
load_path: str = None,
|
116 |
+
):
|
117 |
+
if not load_path:
|
118 |
+
load_path = download(
|
119 |
+
model_type=model_type, model_bitrate=model_bitrate, tag=tag
|
120 |
+
)
|
121 |
+
generator = DAC.load(load_path)
|
122 |
+
return generator
|
vae_modules/dac/utils/decode.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import argbind
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from audiotools import AudioSignal
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from dac import DACFile
|
11 |
+
from dac.utils import load_model
|
12 |
+
|
13 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
14 |
+
|
15 |
+
|
16 |
+
@argbind.bind(group="decode", positional=True, without_prefix=True)
|
17 |
+
@torch.inference_mode()
|
18 |
+
@torch.no_grad()
|
19 |
+
def decode(
|
20 |
+
input: str,
|
21 |
+
output: str = "",
|
22 |
+
weights_path: str = "",
|
23 |
+
model_tag: str = "latest",
|
24 |
+
model_bitrate: str = "8kbps",
|
25 |
+
device: str = "cuda",
|
26 |
+
model_type: str = "44khz",
|
27 |
+
verbose: bool = False,
|
28 |
+
):
|
29 |
+
"""Decode audio from codes.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
input : str
|
34 |
+
Path to input directory or file
|
35 |
+
output : str, optional
|
36 |
+
Path to output directory, by default "".
|
37 |
+
If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
|
38 |
+
weights_path : str, optional
|
39 |
+
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
|
40 |
+
model_tag and model_type.
|
41 |
+
model_tag : str, optional
|
42 |
+
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
|
43 |
+
model_bitrate: str
|
44 |
+
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
|
45 |
+
device : str, optional
|
46 |
+
Device to use, by default "cuda". If "cpu", the model will be loaded on the CPU.
|
47 |
+
model_type : str, optional
|
48 |
+
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
|
49 |
+
"""
|
50 |
+
generator = load_model(
|
51 |
+
model_type=model_type,
|
52 |
+
model_bitrate=model_bitrate,
|
53 |
+
tag=model_tag,
|
54 |
+
load_path=weights_path,
|
55 |
+
)
|
56 |
+
generator.to(device)
|
57 |
+
generator.eval()
|
58 |
+
|
59 |
+
# Find all .dac files in input directory
|
60 |
+
_input = Path(input)
|
61 |
+
input_files = list(_input.glob("**/*.dac"))
|
62 |
+
|
63 |
+
# If input is a .dac file, add it to the list
|
64 |
+
if _input.suffix == ".dac":
|
65 |
+
input_files.append(_input)
|
66 |
+
|
67 |
+
# Create output directory
|
68 |
+
output = Path(output)
|
69 |
+
output.mkdir(parents=True, exist_ok=True)
|
70 |
+
|
71 |
+
for i in tqdm(range(len(input_files)), desc=f"Decoding files"):
|
72 |
+
# Load file
|
73 |
+
artifact = DACFile.load(input_files[i])
|
74 |
+
|
75 |
+
# Reconstruct audio from codes
|
76 |
+
recons = generator.decompress(artifact, verbose=verbose)
|
77 |
+
|
78 |
+
# Compute output path
|
79 |
+
relative_path = input_files[i].relative_to(input)
|
80 |
+
output_dir = output / relative_path.parent
|
81 |
+
if not relative_path.name:
|
82 |
+
output_dir = output
|
83 |
+
relative_path = input_files[i]
|
84 |
+
output_name = relative_path.with_suffix(".wav").name
|
85 |
+
output_path = output_dir / output_name
|
86 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
87 |
+
|
88 |
+
# Write to file
|
89 |
+
recons.write(output_path)
|
90 |
+
|
91 |
+
|
92 |
+
if __name__ == "__main__":
|
93 |
+
args = argbind.parse_args()
|
94 |
+
with argbind.scope(args):
|
95 |
+
decode()
|
vae_modules/dac/utils/encode.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import argbind
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from audiotools import AudioSignal
|
9 |
+
from audiotools.core import util
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from dac.utils import load_model
|
13 |
+
|
14 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
15 |
+
|
16 |
+
|
17 |
+
@argbind.bind(group="encode", positional=True, without_prefix=True)
|
18 |
+
@torch.inference_mode()
|
19 |
+
@torch.no_grad()
|
20 |
+
def encode(
|
21 |
+
input: str,
|
22 |
+
output: str = "",
|
23 |
+
weights_path: str = "",
|
24 |
+
model_tag: str = "latest",
|
25 |
+
model_bitrate: str = "8kbps",
|
26 |
+
n_quantizers: int = None,
|
27 |
+
device: str = "cuda",
|
28 |
+
model_type: str = "44khz",
|
29 |
+
win_duration: float = 5.0,
|
30 |
+
verbose: bool = False,
|
31 |
+
):
|
32 |
+
"""Encode audio files in input path to .dac format.
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
input : str
|
37 |
+
Path to input audio file or directory
|
38 |
+
output : str, optional
|
39 |
+
Path to output directory, by default "". If `input` is a directory, the directory sub-tree relative to `input` is re-created in `output`.
|
40 |
+
weights_path : str, optional
|
41 |
+
Path to weights file, by default "". If not specified, the weights file will be downloaded from the internet using the
|
42 |
+
model_tag and model_type.
|
43 |
+
model_tag : str, optional
|
44 |
+
Tag of the model to use, by default "latest". Ignored if `weights_path` is specified.
|
45 |
+
model_bitrate: str
|
46 |
+
Bitrate of the model. Must be one of "8kbps", or "16kbps". Defaults to "8kbps".
|
47 |
+
n_quantizers : int, optional
|
48 |
+
Number of quantizers to use, by default None. If not specified, all the quantizers will be used and the model will compress at maximum bitrate.
|
49 |
+
device : str, optional
|
50 |
+
Device to use, by default "cuda"
|
51 |
+
model_type : str, optional
|
52 |
+
The type of model to use. Must be one of "44khz", "24khz", or "16khz". Defaults to "44khz". Ignored if `weights_path` is specified.
|
53 |
+
"""
|
54 |
+
generator = load_model(
|
55 |
+
model_type=model_type,
|
56 |
+
model_bitrate=model_bitrate,
|
57 |
+
tag=model_tag,
|
58 |
+
load_path=weights_path,
|
59 |
+
)
|
60 |
+
generator.to(device)
|
61 |
+
generator.eval()
|
62 |
+
kwargs = {"n_quantizers": n_quantizers}
|
63 |
+
|
64 |
+
# Find all audio files in input path
|
65 |
+
input = Path(input)
|
66 |
+
audio_files = util.find_audio(input)
|
67 |
+
|
68 |
+
output = Path(output)
|
69 |
+
output.mkdir(parents=True, exist_ok=True)
|
70 |
+
|
71 |
+
for i in tqdm(range(len(audio_files)), desc="Encoding files"):
|
72 |
+
# Load file
|
73 |
+
signal = AudioSignal(audio_files[i])
|
74 |
+
|
75 |
+
# Encode audio to .dac format
|
76 |
+
artifact = generator.compress(signal, win_duration, verbose=verbose, **kwargs)
|
77 |
+
|
78 |
+
# Compute output path
|
79 |
+
relative_path = audio_files[i].relative_to(input)
|
80 |
+
output_dir = output / relative_path.parent
|
81 |
+
if not relative_path.name:
|
82 |
+
output_dir = output
|
83 |
+
relative_path = audio_files[i]
|
84 |
+
output_name = relative_path.with_suffix(".dac").name
|
85 |
+
output_path = output_dir / output_name
|
86 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
87 |
+
|
88 |
+
artifact.save(output_path)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
args = argbind.parse_args()
|
93 |
+
with argbind.scope(args):
|
94 |
+
encode()
|
vae_modules/stable_vae/__init__.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .models.autoencoders import create_autoencoder_from_config
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
from torch.nn.utils import remove_weight_norm
|
6 |
+
|
7 |
+
|
8 |
+
def remove_all_weight_norm(model):
|
9 |
+
for name, module in model.named_modules():
|
10 |
+
if hasattr(module, 'weight_g'):
|
11 |
+
remove_weight_norm(module)
|
12 |
+
|
13 |
+
|
14 |
+
def load_vae(ckpt_path, remove_weight_norm=False):
|
15 |
+
config_file = os.path.join(os.path.dirname(ckpt_path), 'config.json')
|
16 |
+
|
17 |
+
# Load the model configuration
|
18 |
+
with open(config_file) as f:
|
19 |
+
model_config = json.load(f)
|
20 |
+
|
21 |
+
# Create the model from the configuration
|
22 |
+
model = create_autoencoder_from_config(model_config)
|
23 |
+
|
24 |
+
# Load the state dictionary from the checkpoint
|
25 |
+
model_dict = torch.load(ckpt_path, map_location='cpu')['state_dict']
|
26 |
+
|
27 |
+
# Strip the "autoencoder." prefix from the keys
|
28 |
+
model_dict = {key[len("autoencoder."):]: value for key, value in model_dict.items() if key.startswith("autoencoder.")}
|
29 |
+
|
30 |
+
# Load the state dictionary into the model
|
31 |
+
model.load_state_dict(model_dict)
|
32 |
+
|
33 |
+
# Remove weight normalization
|
34 |
+
if remove_weight_norm:
|
35 |
+
remove_all_weight_norm(model)
|
36 |
+
|
37 |
+
# Set the model to evaluation mode
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
return model
|
vae_modules/stable_vae/models/autoencoders.py
ADDED
@@ -0,0 +1,683 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from torchaudio import transforms as T
|
8 |
+
from alias_free_torch import Activation1d
|
9 |
+
from .nn.layers import WNConv1d, WNConvTranspose1d
|
10 |
+
from typing import Literal, Dict, Any
|
11 |
+
|
12 |
+
# from .inference.sampling import sample
|
13 |
+
from .utils import prepare_audio
|
14 |
+
from .blocks import SnakeBeta
|
15 |
+
from .bottleneck import Bottleneck, DiscreteBottleneck
|
16 |
+
from .factory import create_pretransform_from_config, create_bottleneck_from_config
|
17 |
+
from .pretransforms import Pretransform
|
18 |
+
|
19 |
+
def checkpoint(function, *args, **kwargs):
|
20 |
+
kwargs.setdefault("use_reentrant", False)
|
21 |
+
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
22 |
+
|
23 |
+
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
24 |
+
if activation == "elu":
|
25 |
+
act = nn.ELU()
|
26 |
+
elif activation == "snake":
|
27 |
+
act = SnakeBeta(channels)
|
28 |
+
elif activation == "none":
|
29 |
+
act = nn.Identity()
|
30 |
+
else:
|
31 |
+
raise ValueError(f"Unknown activation {activation}")
|
32 |
+
|
33 |
+
if antialias:
|
34 |
+
act = Activation1d(act)
|
35 |
+
|
36 |
+
return act
|
37 |
+
|
38 |
+
class ResidualUnit(nn.Module):
|
39 |
+
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.dilation = dilation
|
43 |
+
|
44 |
+
padding = (dilation * (7-1)) // 2
|
45 |
+
|
46 |
+
self.layers = nn.Sequential(
|
47 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
48 |
+
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
49 |
+
kernel_size=7, dilation=dilation, padding=padding),
|
50 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
51 |
+
WNConv1d(in_channels=out_channels, out_channels=out_channels,
|
52 |
+
kernel_size=1)
|
53 |
+
)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
res = x
|
57 |
+
|
58 |
+
#x = checkpoint(self.layers, x)
|
59 |
+
x = self.layers(x)
|
60 |
+
|
61 |
+
return x + res
|
62 |
+
|
63 |
+
class EncoderBlock(nn.Module):
|
64 |
+
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
|
65 |
+
super().__init__()
|
66 |
+
|
67 |
+
self.layers = nn.Sequential(
|
68 |
+
ResidualUnit(in_channels=in_channels,
|
69 |
+
out_channels=in_channels, dilation=1, use_snake=use_snake),
|
70 |
+
ResidualUnit(in_channels=in_channels,
|
71 |
+
out_channels=in_channels, dilation=3, use_snake=use_snake),
|
72 |
+
ResidualUnit(in_channels=in_channels,
|
73 |
+
out_channels=in_channels, dilation=9, use_snake=use_snake),
|
74 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
75 |
+
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
76 |
+
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
|
77 |
+
)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
return self.layers(x)
|
81 |
+
|
82 |
+
class DecoderBlock(nn.Module):
|
83 |
+
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
|
84 |
+
super().__init__()
|
85 |
+
|
86 |
+
if use_nearest_upsample:
|
87 |
+
upsample_layer = nn.Sequential(
|
88 |
+
nn.Upsample(scale_factor=stride, mode="nearest"),
|
89 |
+
WNConv1d(in_channels=in_channels,
|
90 |
+
out_channels=out_channels,
|
91 |
+
kernel_size=2*stride,
|
92 |
+
stride=1,
|
93 |
+
bias=False,
|
94 |
+
padding='same')
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
upsample_layer = WNConvTranspose1d(in_channels=in_channels,
|
98 |
+
out_channels=out_channels,
|
99 |
+
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
|
100 |
+
|
101 |
+
self.layers = nn.Sequential(
|
102 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
103 |
+
upsample_layer,
|
104 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
105 |
+
dilation=1, use_snake=use_snake),
|
106 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
107 |
+
dilation=3, use_snake=use_snake),
|
108 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
109 |
+
dilation=9, use_snake=use_snake),
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
return self.layers(x)
|
114 |
+
|
115 |
+
class OobleckEncoder(nn.Module):
|
116 |
+
def __init__(self,
|
117 |
+
in_channels=2,
|
118 |
+
channels=128,
|
119 |
+
latent_dim=32,
|
120 |
+
c_mults = [1, 2, 4, 8],
|
121 |
+
strides = [2, 4, 8, 8],
|
122 |
+
use_snake=False,
|
123 |
+
antialias_activation=False
|
124 |
+
):
|
125 |
+
super().__init__()
|
126 |
+
|
127 |
+
c_mults = [1] + c_mults
|
128 |
+
|
129 |
+
self.depth = len(c_mults)
|
130 |
+
|
131 |
+
layers = [
|
132 |
+
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
|
133 |
+
]
|
134 |
+
|
135 |
+
for i in range(self.depth-1):
|
136 |
+
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
|
137 |
+
|
138 |
+
layers += [
|
139 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
|
140 |
+
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
|
141 |
+
]
|
142 |
+
|
143 |
+
self.layers = nn.Sequential(*layers)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
return self.layers(x)
|
147 |
+
|
148 |
+
|
149 |
+
class OobleckDecoder(nn.Module):
|
150 |
+
def __init__(self,
|
151 |
+
out_channels=2,
|
152 |
+
channels=128,
|
153 |
+
latent_dim=32,
|
154 |
+
c_mults = [1, 2, 4, 8],
|
155 |
+
strides = [2, 4, 8, 8],
|
156 |
+
use_snake=False,
|
157 |
+
antialias_activation=False,
|
158 |
+
use_nearest_upsample=False,
|
159 |
+
final_tanh=True):
|
160 |
+
super().__init__()
|
161 |
+
|
162 |
+
c_mults = [1] + c_mults
|
163 |
+
|
164 |
+
self.depth = len(c_mults)
|
165 |
+
|
166 |
+
layers = [
|
167 |
+
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
|
168 |
+
]
|
169 |
+
|
170 |
+
for i in range(self.depth-1, 0, -1):
|
171 |
+
layers += [DecoderBlock(
|
172 |
+
in_channels=c_mults[i]*channels,
|
173 |
+
out_channels=c_mults[i-1]*channels,
|
174 |
+
stride=strides[i-1],
|
175 |
+
use_snake=use_snake,
|
176 |
+
antialias_activation=antialias_activation,
|
177 |
+
use_nearest_upsample=use_nearest_upsample
|
178 |
+
)
|
179 |
+
]
|
180 |
+
|
181 |
+
layers += [
|
182 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
|
183 |
+
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
|
184 |
+
nn.Tanh() if final_tanh else nn.Identity()
|
185 |
+
]
|
186 |
+
|
187 |
+
self.layers = nn.Sequential(*layers)
|
188 |
+
|
189 |
+
def forward(self, x):
|
190 |
+
return self.layers(x)
|
191 |
+
|
192 |
+
|
193 |
+
class DACEncoderWrapper(nn.Module):
|
194 |
+
def __init__(self, in_channels=1, **kwargs):
|
195 |
+
super().__init__()
|
196 |
+
|
197 |
+
from dac.model.dac import Encoder as DACEncoder
|
198 |
+
|
199 |
+
latent_dim = kwargs.pop("latent_dim", None)
|
200 |
+
|
201 |
+
encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"]))
|
202 |
+
self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs)
|
203 |
+
self.latent_dim = latent_dim
|
204 |
+
|
205 |
+
# Latent-dim support was added to DAC after this was first written, and implemented differently, so this is for backwards compatibility
|
206 |
+
self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity()
|
207 |
+
|
208 |
+
if in_channels != 1:
|
209 |
+
self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3)
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
x = self.encoder(x)
|
213 |
+
x = self.proj_out(x)
|
214 |
+
return x
|
215 |
+
|
216 |
+
class DACDecoderWrapper(nn.Module):
|
217 |
+
def __init__(self, latent_dim, out_channels=1, **kwargs):
|
218 |
+
super().__init__()
|
219 |
+
|
220 |
+
from dac.model.dac import Decoder as DACDecoder
|
221 |
+
|
222 |
+
self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels)
|
223 |
+
|
224 |
+
self.latent_dim = latent_dim
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
return self.decoder(x)
|
228 |
+
|
229 |
+
class AudioAutoencoder(nn.Module):
|
230 |
+
def __init__(
|
231 |
+
self,
|
232 |
+
encoder,
|
233 |
+
decoder,
|
234 |
+
latent_dim,
|
235 |
+
downsampling_ratio,
|
236 |
+
sample_rate,
|
237 |
+
io_channels=2,
|
238 |
+
bottleneck: Bottleneck = None,
|
239 |
+
pretransform: Pretransform = None,
|
240 |
+
in_channels = None,
|
241 |
+
out_channels = None,
|
242 |
+
soft_clip = False
|
243 |
+
):
|
244 |
+
super().__init__()
|
245 |
+
|
246 |
+
self.downsampling_ratio = downsampling_ratio
|
247 |
+
self.sample_rate = sample_rate
|
248 |
+
|
249 |
+
self.latent_dim = latent_dim
|
250 |
+
self.io_channels = io_channels
|
251 |
+
self.in_channels = io_channels
|
252 |
+
self.out_channels = io_channels
|
253 |
+
|
254 |
+
self.min_length = self.downsampling_ratio
|
255 |
+
|
256 |
+
if in_channels is not None:
|
257 |
+
self.in_channels = in_channels
|
258 |
+
|
259 |
+
if out_channels is not None:
|
260 |
+
self.out_channels = out_channels
|
261 |
+
|
262 |
+
self.bottleneck = bottleneck
|
263 |
+
|
264 |
+
self.encoder = encoder
|
265 |
+
|
266 |
+
self.decoder = decoder
|
267 |
+
|
268 |
+
self.pretransform = pretransform
|
269 |
+
|
270 |
+
self.soft_clip = soft_clip
|
271 |
+
|
272 |
+
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete
|
273 |
+
|
274 |
+
def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs):
|
275 |
+
|
276 |
+
info = {}
|
277 |
+
|
278 |
+
if self.pretransform is not None and not skip_pretransform:
|
279 |
+
if self.pretransform.enable_grad:
|
280 |
+
if iterate_batch:
|
281 |
+
audios = []
|
282 |
+
for i in range(audio.shape[0]):
|
283 |
+
audios.append(self.pretransform.encode(audio[i:i+1]))
|
284 |
+
audio = torch.cat(audios, dim=0)
|
285 |
+
else:
|
286 |
+
audio = self.pretransform.encode(audio)
|
287 |
+
else:
|
288 |
+
with torch.no_grad():
|
289 |
+
if iterate_batch:
|
290 |
+
audios = []
|
291 |
+
for i in range(audio.shape[0]):
|
292 |
+
audios.append(self.pretransform.encode(audio[i:i+1]))
|
293 |
+
audio = torch.cat(audios, dim=0)
|
294 |
+
else:
|
295 |
+
audio = self.pretransform.encode(audio)
|
296 |
+
|
297 |
+
if self.encoder is not None:
|
298 |
+
if iterate_batch:
|
299 |
+
latents = []
|
300 |
+
for i in range(audio.shape[0]):
|
301 |
+
latents.append(self.encoder(audio[i:i+1]))
|
302 |
+
latents = torch.cat(latents, dim=0)
|
303 |
+
else:
|
304 |
+
latents = self.encoder(audio)
|
305 |
+
else:
|
306 |
+
latents = audio
|
307 |
+
|
308 |
+
if self.bottleneck is not None:
|
309 |
+
# TODO: Add iterate batch logic, needs to merge the info dicts
|
310 |
+
latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs)
|
311 |
+
|
312 |
+
info.update(bottleneck_info)
|
313 |
+
|
314 |
+
if return_info:
|
315 |
+
return latents, info
|
316 |
+
|
317 |
+
return latents
|
318 |
+
|
319 |
+
def decode(self, latents, iterate_batch=False, **kwargs):
|
320 |
+
|
321 |
+
if self.bottleneck is not None:
|
322 |
+
if iterate_batch:
|
323 |
+
decoded = []
|
324 |
+
for i in range(latents.shape[0]):
|
325 |
+
decoded.append(self.bottleneck.decode(latents[i:i+1]))
|
326 |
+
decoded = torch.cat(decoded, dim=0)
|
327 |
+
else:
|
328 |
+
latents = self.bottleneck.decode(latents)
|
329 |
+
|
330 |
+
if iterate_batch:
|
331 |
+
decoded = []
|
332 |
+
for i in range(latents.shape[0]):
|
333 |
+
decoded.append(self.decoder(latents[i:i+1]))
|
334 |
+
decoded = torch.cat(decoded, dim=0)
|
335 |
+
else:
|
336 |
+
decoded = self.decoder(latents, **kwargs)
|
337 |
+
|
338 |
+
if self.pretransform is not None:
|
339 |
+
if self.pretransform.enable_grad:
|
340 |
+
if iterate_batch:
|
341 |
+
decodeds = []
|
342 |
+
for i in range(decoded.shape[0]):
|
343 |
+
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
|
344 |
+
decoded = torch.cat(decodeds, dim=0)
|
345 |
+
else:
|
346 |
+
decoded = self.pretransform.decode(decoded)
|
347 |
+
else:
|
348 |
+
with torch.no_grad():
|
349 |
+
if iterate_batch:
|
350 |
+
decodeds = []
|
351 |
+
for i in range(latents.shape[0]):
|
352 |
+
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
|
353 |
+
decoded = torch.cat(decodeds, dim=0)
|
354 |
+
else:
|
355 |
+
decoded = self.pretransform.decode(decoded)
|
356 |
+
|
357 |
+
if self.soft_clip:
|
358 |
+
decoded = torch.tanh(decoded)
|
359 |
+
|
360 |
+
return decoded
|
361 |
+
|
362 |
+
def decode_tokens(self, tokens, **kwargs):
|
363 |
+
'''
|
364 |
+
Decode discrete tokens to audio
|
365 |
+
Only works with discrete autoencoders
|
366 |
+
'''
|
367 |
+
|
368 |
+
assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders"
|
369 |
+
|
370 |
+
latents = self.bottleneck.decode_tokens(tokens, **kwargs)
|
371 |
+
|
372 |
+
return self.decode(latents, **kwargs)
|
373 |
+
|
374 |
+
|
375 |
+
def preprocess_audio_for_encoder(self, audio, in_sr):
|
376 |
+
'''
|
377 |
+
Preprocess single audio tensor (Channels x Length) to be compatible with the encoder.
|
378 |
+
If the model is mono, stereo audio will be converted to mono.
|
379 |
+
Audio will be silence-padded to be a multiple of the model's downsampling ratio.
|
380 |
+
Audio will be resampled to the model's sample rate.
|
381 |
+
The output will have batch size 1 and be shape (1 x Channels x Length)
|
382 |
+
'''
|
383 |
+
return self.preprocess_audio_list_for_encoder([audio], [in_sr])
|
384 |
+
|
385 |
+
def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list):
|
386 |
+
'''
|
387 |
+
Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder.
|
388 |
+
The audio in that list can be of different lengths and channels.
|
389 |
+
in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio.
|
390 |
+
All audio will be resampled to the model's sample rate.
|
391 |
+
Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio.
|
392 |
+
If the model is mono, all audio will be converted to mono.
|
393 |
+
The output will be a tensor of shape (Batch x Channels x Length)
|
394 |
+
'''
|
395 |
+
batch_size = len(audio_list)
|
396 |
+
if isinstance(in_sr_list, int):
|
397 |
+
in_sr_list = [in_sr_list]*batch_size
|
398 |
+
assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list"
|
399 |
+
new_audio = []
|
400 |
+
max_length = 0
|
401 |
+
# resample & find the max length
|
402 |
+
for i in range(batch_size):
|
403 |
+
audio = audio_list[i]
|
404 |
+
in_sr = in_sr_list[i]
|
405 |
+
if len(audio.shape) == 3 and audio.shape[0] == 1:
|
406 |
+
# batchsize 1 was given by accident. Just squeeze it.
|
407 |
+
audio = audio.squeeze(0)
|
408 |
+
elif len(audio.shape) == 1:
|
409 |
+
# Mono signal, channel dimension is missing, unsqueeze it in
|
410 |
+
audio = audio.unsqueeze(0)
|
411 |
+
assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension"
|
412 |
+
# Resample audio
|
413 |
+
if in_sr != self.sample_rate:
|
414 |
+
resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device)
|
415 |
+
audio = resample_tf(audio)
|
416 |
+
new_audio.append(audio)
|
417 |
+
if audio.shape[-1] > max_length:
|
418 |
+
max_length = audio.shape[-1]
|
419 |
+
# Pad every audio to the same length, multiple of model's downsampling ratio
|
420 |
+
padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length
|
421 |
+
for i in range(batch_size):
|
422 |
+
# Pad it & if necessary, mixdown/duplicate stereo/mono channels to support model
|
423 |
+
new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length,
|
424 |
+
target_channels=self.in_channels, device=new_audio[i].device).squeeze(0)
|
425 |
+
# convert to tensor
|
426 |
+
return torch.stack(new_audio)
|
427 |
+
|
428 |
+
def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs):
|
429 |
+
'''
|
430 |
+
Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder.
|
431 |
+
If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap.
|
432 |
+
Overlap and chunk_size params are both measured in number of latents (not audio samples)
|
433 |
+
# and therefore you likely could use the same values with decode_audio.
|
434 |
+
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
|
435 |
+
Every autoencoder will have a different receptive field size, and thus ideal overlap.
|
436 |
+
You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff.
|
437 |
+
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
|
438 |
+
Smaller chunk_size uses less memory, but more compute.
|
439 |
+
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
|
440 |
+
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
|
441 |
+
'''
|
442 |
+
if not chunked:
|
443 |
+
# default behavior. Encode the entire audio in parallel
|
444 |
+
return self.encode(audio, **kwargs)
|
445 |
+
else:
|
446 |
+
# CHUNKED ENCODING
|
447 |
+
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
|
448 |
+
samples_per_latent = self.downsampling_ratio
|
449 |
+
total_size = audio.shape[2] # in samples
|
450 |
+
batch_size = audio.shape[0]
|
451 |
+
chunk_size *= samples_per_latent # converting metric in latents to samples
|
452 |
+
overlap *= samples_per_latent # converting metric in latents to samples
|
453 |
+
hop_size = chunk_size - overlap
|
454 |
+
chunks = []
|
455 |
+
for i in range(0, total_size - chunk_size + 1, hop_size):
|
456 |
+
chunk = audio[:,:,i:i+chunk_size]
|
457 |
+
chunks.append(chunk)
|
458 |
+
if i+chunk_size != total_size:
|
459 |
+
# Final chunk
|
460 |
+
chunk = audio[:,:,-chunk_size:]
|
461 |
+
chunks.append(chunk)
|
462 |
+
chunks = torch.stack(chunks)
|
463 |
+
num_chunks = chunks.shape[0]
|
464 |
+
# Note: y_size might be a different value from the latent length used in diffusion training
|
465 |
+
# because we can encode audio of varying lengths
|
466 |
+
# However, the audio should've been padded to a multiple of samples_per_latent by now.
|
467 |
+
y_size = total_size // samples_per_latent
|
468 |
+
# Create an empty latent, we will populate it with chunks as we encode them
|
469 |
+
y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device)
|
470 |
+
for i in range(num_chunks):
|
471 |
+
x_chunk = chunks[i,:]
|
472 |
+
# encode the chunk
|
473 |
+
y_chunk = self.encode(x_chunk)
|
474 |
+
# figure out where to put the audio along the time domain
|
475 |
+
if i == num_chunks-1:
|
476 |
+
# final chunk always goes at the end
|
477 |
+
t_end = y_size
|
478 |
+
t_start = t_end - y_chunk.shape[2]
|
479 |
+
else:
|
480 |
+
t_start = i * hop_size // samples_per_latent
|
481 |
+
t_end = t_start + chunk_size // samples_per_latent
|
482 |
+
# remove the edges of the overlaps
|
483 |
+
ol = overlap//samples_per_latent//2
|
484 |
+
chunk_start = 0
|
485 |
+
chunk_end = y_chunk.shape[2]
|
486 |
+
if i > 0:
|
487 |
+
# no overlap for the start of the first chunk
|
488 |
+
t_start += ol
|
489 |
+
chunk_start += ol
|
490 |
+
if i < num_chunks-1:
|
491 |
+
# no overlap for the end of the last chunk
|
492 |
+
t_end -= ol
|
493 |
+
chunk_end -= ol
|
494 |
+
# paste the chunked audio into our y_final output audio
|
495 |
+
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
496 |
+
return y_final
|
497 |
+
|
498 |
+
def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs):
|
499 |
+
'''
|
500 |
+
Decode latents to audio.
|
501 |
+
If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents.
|
502 |
+
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
|
503 |
+
Every autoencoder will have a different receptive field size, and thus ideal overlap.
|
504 |
+
You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff.
|
505 |
+
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
|
506 |
+
Smaller chunk_size uses less memory, but more compute.
|
507 |
+
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
|
508 |
+
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
|
509 |
+
'''
|
510 |
+
if not chunked:
|
511 |
+
# default behavior. Decode the entire latent in parallel
|
512 |
+
return self.decode(latents, **kwargs)
|
513 |
+
else:
|
514 |
+
# chunked decoding
|
515 |
+
hop_size = chunk_size - overlap
|
516 |
+
total_size = latents.shape[2]
|
517 |
+
batch_size = latents.shape[0]
|
518 |
+
chunks = []
|
519 |
+
for i in range(0, total_size - chunk_size + 1, hop_size):
|
520 |
+
chunk = latents[:,:,i:i+chunk_size]
|
521 |
+
chunks.append(chunk)
|
522 |
+
if i+chunk_size != total_size:
|
523 |
+
# Final chunk
|
524 |
+
chunk = latents[:,:,-chunk_size:]
|
525 |
+
chunks.append(chunk)
|
526 |
+
chunks = torch.stack(chunks)
|
527 |
+
num_chunks = chunks.shape[0]
|
528 |
+
# samples_per_latent is just the downsampling ratio
|
529 |
+
samples_per_latent = self.downsampling_ratio
|
530 |
+
# Create an empty waveform, we will populate it with chunks as decode them
|
531 |
+
y_size = total_size * samples_per_latent
|
532 |
+
y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device)
|
533 |
+
for i in range(num_chunks):
|
534 |
+
x_chunk = chunks[i,:]
|
535 |
+
# decode the chunk
|
536 |
+
y_chunk = self.decode(x_chunk)
|
537 |
+
# figure out where to put the audio along the time domain
|
538 |
+
if i == num_chunks-1:
|
539 |
+
# final chunk always goes at the end
|
540 |
+
t_end = y_size
|
541 |
+
t_start = t_end - y_chunk.shape[2]
|
542 |
+
else:
|
543 |
+
t_start = i * hop_size * samples_per_latent
|
544 |
+
t_end = t_start + chunk_size * samples_per_latent
|
545 |
+
# remove the edges of the overlaps
|
546 |
+
ol = (overlap//2) * samples_per_latent
|
547 |
+
chunk_start = 0
|
548 |
+
chunk_end = y_chunk.shape[2]
|
549 |
+
if i > 0:
|
550 |
+
# no overlap for the start of the first chunk
|
551 |
+
t_start += ol
|
552 |
+
chunk_start += ol
|
553 |
+
if i < num_chunks-1:
|
554 |
+
# no overlap for the end of the last chunk
|
555 |
+
t_end -= ol
|
556 |
+
chunk_end -= ol
|
557 |
+
# paste the chunked audio into our y_final output audio
|
558 |
+
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
559 |
+
return y_final
|
560 |
+
|
561 |
+
|
562 |
+
# AE factories
|
563 |
+
|
564 |
+
def create_encoder_from_config(encoder_config: Dict[str, Any]):
|
565 |
+
encoder_type = encoder_config.get("type", None)
|
566 |
+
assert encoder_type is not None, "Encoder type must be specified"
|
567 |
+
|
568 |
+
if encoder_type == "oobleck":
|
569 |
+
encoder = OobleckEncoder(
|
570 |
+
**encoder_config["config"]
|
571 |
+
)
|
572 |
+
|
573 |
+
elif encoder_type == "seanet":
|
574 |
+
from encodec.modules import SEANetEncoder
|
575 |
+
seanet_encoder_config = encoder_config["config"]
|
576 |
+
|
577 |
+
#SEANet encoder expects strides in reverse order
|
578 |
+
seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2])))
|
579 |
+
encoder = SEANetEncoder(
|
580 |
+
**seanet_encoder_config
|
581 |
+
)
|
582 |
+
elif encoder_type == "dac":
|
583 |
+
dac_config = encoder_config["config"]
|
584 |
+
|
585 |
+
encoder = DACEncoderWrapper(**dac_config)
|
586 |
+
elif encoder_type == "local_attn":
|
587 |
+
from .local_attention import TransformerEncoder1D
|
588 |
+
|
589 |
+
local_attn_config = encoder_config["config"]
|
590 |
+
|
591 |
+
encoder = TransformerEncoder1D(
|
592 |
+
**local_attn_config
|
593 |
+
)
|
594 |
+
else:
|
595 |
+
raise ValueError(f"Unknown encoder type {encoder_type}")
|
596 |
+
|
597 |
+
requires_grad = encoder_config.get("requires_grad", True)
|
598 |
+
if not requires_grad:
|
599 |
+
for param in encoder.parameters():
|
600 |
+
param.requires_grad = False
|
601 |
+
|
602 |
+
return encoder
|
603 |
+
|
604 |
+
def create_decoder_from_config(decoder_config: Dict[str, Any]):
|
605 |
+
decoder_type = decoder_config.get("type", None)
|
606 |
+
assert decoder_type is not None, "Decoder type must be specified"
|
607 |
+
|
608 |
+
if decoder_type == "oobleck":
|
609 |
+
decoder = OobleckDecoder(
|
610 |
+
**decoder_config["config"]
|
611 |
+
)
|
612 |
+
elif decoder_type == "seanet":
|
613 |
+
from encodec.modules import SEANetDecoder
|
614 |
+
|
615 |
+
decoder = SEANetDecoder(
|
616 |
+
**decoder_config["config"]
|
617 |
+
)
|
618 |
+
elif decoder_type == "dac":
|
619 |
+
dac_config = decoder_config["config"]
|
620 |
+
|
621 |
+
decoder = DACDecoderWrapper(**dac_config)
|
622 |
+
elif decoder_type == "local_attn":
|
623 |
+
from .local_attention import TransformerDecoder1D
|
624 |
+
|
625 |
+
local_attn_config = decoder_config["config"]
|
626 |
+
|
627 |
+
decoder = TransformerDecoder1D(
|
628 |
+
**local_attn_config
|
629 |
+
)
|
630 |
+
else:
|
631 |
+
raise ValueError(f"Unknown decoder type {decoder_type}")
|
632 |
+
|
633 |
+
requires_grad = decoder_config.get("requires_grad", True)
|
634 |
+
if not requires_grad:
|
635 |
+
for param in decoder.parameters():
|
636 |
+
param.requires_grad = False
|
637 |
+
|
638 |
+
return decoder
|
639 |
+
|
640 |
+
def create_autoencoder_from_config(config: Dict[str, Any]):
|
641 |
+
|
642 |
+
ae_config = config["model"]
|
643 |
+
|
644 |
+
encoder = create_encoder_from_config(ae_config["encoder"])
|
645 |
+
decoder = create_decoder_from_config(ae_config["decoder"])
|
646 |
+
|
647 |
+
bottleneck = ae_config.get("bottleneck", None)
|
648 |
+
|
649 |
+
latent_dim = ae_config.get("latent_dim", None)
|
650 |
+
assert latent_dim is not None, "latent_dim must be specified in model config"
|
651 |
+
downsampling_ratio = ae_config.get("downsampling_ratio", None)
|
652 |
+
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
|
653 |
+
io_channels = ae_config.get("io_channels", None)
|
654 |
+
assert io_channels is not None, "io_channels must be specified in model config"
|
655 |
+
sample_rate = config.get("sample_rate", None)
|
656 |
+
assert sample_rate is not None, "sample_rate must be specified in model config"
|
657 |
+
|
658 |
+
in_channels = ae_config.get("in_channels", None)
|
659 |
+
out_channels = ae_config.get("out_channels", None)
|
660 |
+
|
661 |
+
pretransform = ae_config.get("pretransform", None)
|
662 |
+
|
663 |
+
if pretransform is not None:
|
664 |
+
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
665 |
+
|
666 |
+
if bottleneck is not None:
|
667 |
+
bottleneck = create_bottleneck_from_config(bottleneck)
|
668 |
+
|
669 |
+
soft_clip = ae_config["decoder"].get("soft_clip", False)
|
670 |
+
|
671 |
+
return AudioAutoencoder(
|
672 |
+
encoder,
|
673 |
+
decoder,
|
674 |
+
io_channels=io_channels,
|
675 |
+
latent_dim=latent_dim,
|
676 |
+
downsampling_ratio=downsampling_ratio,
|
677 |
+
sample_rate=sample_rate,
|
678 |
+
bottleneck=bottleneck,
|
679 |
+
pretransform=pretransform,
|
680 |
+
in_channels=in_channels,
|
681 |
+
out_channels=out_channels,
|
682 |
+
soft_clip=soft_clip
|
683 |
+
)
|
vae_modules/stable_vae/models/blocks.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import reduce
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from torch.backends.cuda import sdp_kernel
|
9 |
+
from packaging import version
|
10 |
+
|
11 |
+
from .nn.layers import Snake1d
|
12 |
+
|
13 |
+
|
14 |
+
class ResidualBlock(nn.Module):
|
15 |
+
def __init__(self, main, skip=None):
|
16 |
+
super().__init__()
|
17 |
+
self.main = nn.Sequential(*main)
|
18 |
+
self.skip = skip if skip else nn.Identity()
|
19 |
+
|
20 |
+
def forward(self, input):
|
21 |
+
return self.main(input) + self.skip(input)
|
22 |
+
|
23 |
+
|
24 |
+
class ResConvBlock(ResidualBlock):
|
25 |
+
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
|
26 |
+
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
|
27 |
+
super().__init__([
|
28 |
+
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
29 |
+
nn.GroupNorm(1, c_mid),
|
30 |
+
Snake1d(c_mid) if use_snake else nn.GELU(),
|
31 |
+
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
32 |
+
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
|
33 |
+
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
|
34 |
+
], skip)
|
35 |
+
|
36 |
+
|
37 |
+
class SelfAttention1d(nn.Module):
|
38 |
+
def __init__(self, c_in, n_head=1, dropout_rate=0.):
|
39 |
+
super().__init__()
|
40 |
+
assert c_in % n_head == 0
|
41 |
+
self.norm = nn.GroupNorm(1, c_in)
|
42 |
+
self.n_head = n_head
|
43 |
+
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
|
44 |
+
self.out_proj = nn.Conv1d(c_in, c_in, 1)
|
45 |
+
self.dropout = nn.Dropout(dropout_rate, inplace=True)
|
46 |
+
|
47 |
+
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
48 |
+
|
49 |
+
if not self.use_flash:
|
50 |
+
return
|
51 |
+
|
52 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
53 |
+
|
54 |
+
if device_properties.major == 8 and device_properties.minor == 0:
|
55 |
+
# Use flash attention for A100 GPUs
|
56 |
+
self.sdp_kernel_config = (True, False, False)
|
57 |
+
else:
|
58 |
+
# Don't use flash attention for other GPUs
|
59 |
+
self.sdp_kernel_config = (False, True, True)
|
60 |
+
|
61 |
+
def forward(self, input):
|
62 |
+
n, c, s = input.shape
|
63 |
+
qkv = self.qkv_proj(self.norm(input))
|
64 |
+
qkv = qkv.view(
|
65 |
+
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
|
66 |
+
q, k, v = qkv.chunk(3, dim=1)
|
67 |
+
scale = k.shape[3]**-0.25
|
68 |
+
|
69 |
+
if self.use_flash:
|
70 |
+
with sdp_kernel(*self.sdp_kernel_config):
|
71 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
|
72 |
+
else:
|
73 |
+
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
|
74 |
+
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])
|
75 |
+
|
76 |
+
|
77 |
+
return input + self.dropout(self.out_proj(y))
|
78 |
+
|
79 |
+
|
80 |
+
class SkipBlock(nn.Module):
|
81 |
+
def __init__(self, *main):
|
82 |
+
super().__init__()
|
83 |
+
self.main = nn.Sequential(*main)
|
84 |
+
|
85 |
+
def forward(self, input):
|
86 |
+
return torch.cat([self.main(input), input], dim=1)
|
87 |
+
|
88 |
+
|
89 |
+
class FourierFeatures(nn.Module):
|
90 |
+
def __init__(self, in_features, out_features, std=1.):
|
91 |
+
super().__init__()
|
92 |
+
assert out_features % 2 == 0
|
93 |
+
self.weight = nn.Parameter(torch.randn(
|
94 |
+
[out_features // 2, in_features]) * std)
|
95 |
+
|
96 |
+
def forward(self, input):
|
97 |
+
f = 2 * math.pi * input @ self.weight.T
|
98 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
99 |
+
|
100 |
+
|
101 |
+
def expand_to_planes(input, shape):
|
102 |
+
return input[..., None].repeat([1, 1, shape[2]])
|
103 |
+
|
104 |
+
_kernels = {
|
105 |
+
'linear':
|
106 |
+
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
|
107 |
+
'cubic':
|
108 |
+
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
|
109 |
+
0.43359375, 0.11328125, -0.03515625, -0.01171875],
|
110 |
+
'lanczos3':
|
111 |
+
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
|
112 |
+
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
|
113 |
+
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
|
114 |
+
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
class Downsample1d(nn.Module):
|
119 |
+
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
120 |
+
super().__init__()
|
121 |
+
self.pad_mode = pad_mode
|
122 |
+
kernel_1d = torch.tensor(_kernels[kernel])
|
123 |
+
self.pad = kernel_1d.shape[0] // 2 - 1
|
124 |
+
self.register_buffer('kernel', kernel_1d)
|
125 |
+
self.channels_last = channels_last
|
126 |
+
|
127 |
+
def forward(self, x):
|
128 |
+
if self.channels_last:
|
129 |
+
x = x.permute(0, 2, 1)
|
130 |
+
x = F.pad(x, (self.pad,) * 2, self.pad_mode)
|
131 |
+
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
132 |
+
indices = torch.arange(x.shape[1], device=x.device)
|
133 |
+
weight[indices, indices] = self.kernel.to(weight)
|
134 |
+
x = F.conv1d(x, weight, stride=2)
|
135 |
+
if self.channels_last:
|
136 |
+
x = x.permute(0, 2, 1)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class Upsample1d(nn.Module):
|
141 |
+
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
142 |
+
super().__init__()
|
143 |
+
self.pad_mode = pad_mode
|
144 |
+
kernel_1d = torch.tensor(_kernels[kernel]) * 2
|
145 |
+
self.pad = kernel_1d.shape[0] // 2 - 1
|
146 |
+
self.register_buffer('kernel', kernel_1d)
|
147 |
+
self.channels_last = channels_last
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
if self.channels_last:
|
151 |
+
x = x.permute(0, 2, 1)
|
152 |
+
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
|
153 |
+
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
154 |
+
indices = torch.arange(x.shape[1], device=x.device)
|
155 |
+
weight[indices, indices] = self.kernel.to(weight)
|
156 |
+
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
|
157 |
+
if self.channels_last:
|
158 |
+
x = x.permute(0, 2, 1)
|
159 |
+
return x
|
160 |
+
|
161 |
+
|
162 |
+
def Downsample1d_2(
|
163 |
+
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
164 |
+
) -> nn.Module:
|
165 |
+
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
166 |
+
|
167 |
+
return nn.Conv1d(
|
168 |
+
in_channels=in_channels,
|
169 |
+
out_channels=out_channels,
|
170 |
+
kernel_size=factor * kernel_multiplier + 1,
|
171 |
+
stride=factor,
|
172 |
+
padding=factor * (kernel_multiplier // 2),
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
def Upsample1d_2(
|
177 |
+
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
178 |
+
) -> nn.Module:
|
179 |
+
|
180 |
+
if factor == 1:
|
181 |
+
return nn.Conv1d(
|
182 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
|
183 |
+
)
|
184 |
+
|
185 |
+
if use_nearest:
|
186 |
+
return nn.Sequential(
|
187 |
+
nn.Upsample(scale_factor=factor, mode="nearest"),
|
188 |
+
nn.Conv1d(
|
189 |
+
in_channels=in_channels,
|
190 |
+
out_channels=out_channels,
|
191 |
+
kernel_size=3,
|
192 |
+
padding=1,
|
193 |
+
),
|
194 |
+
)
|
195 |
+
else:
|
196 |
+
return nn.ConvTranspose1d(
|
197 |
+
in_channels=in_channels,
|
198 |
+
out_channels=out_channels,
|
199 |
+
kernel_size=factor * 2,
|
200 |
+
stride=factor,
|
201 |
+
padding=factor // 2 + factor % 2,
|
202 |
+
output_padding=factor % 2,
|
203 |
+
)
|
204 |
+
|
205 |
+
|
206 |
+
def zero_init(layer):
|
207 |
+
nn.init.zeros_(layer.weight)
|
208 |
+
if layer.bias is not None:
|
209 |
+
nn.init.zeros_(layer.bias)
|
210 |
+
return layer
|
211 |
+
|
212 |
+
|
213 |
+
def rms_norm(x, scale, eps):
|
214 |
+
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
215 |
+
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
216 |
+
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
217 |
+
return x * scale.to(x.dtype)
|
218 |
+
|
219 |
+
#rms_norm = torch.compile(rms_norm)
|
220 |
+
|
221 |
+
class AdaRMSNorm(nn.Module):
|
222 |
+
def __init__(self, features, cond_features, eps=1e-6):
|
223 |
+
super().__init__()
|
224 |
+
self.eps = eps
|
225 |
+
self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
|
226 |
+
|
227 |
+
def extra_repr(self):
|
228 |
+
return f"eps={self.eps},"
|
229 |
+
|
230 |
+
def forward(self, x, cond):
|
231 |
+
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
|
232 |
+
|
233 |
+
|
234 |
+
def normalize(x, eps=1e-4):
|
235 |
+
dim = list(range(1, x.ndim))
|
236 |
+
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
|
237 |
+
alpha = np.sqrt(n.numel() / x.numel())
|
238 |
+
return x / torch.add(eps, n, alpha=alpha)
|
239 |
+
|
240 |
+
|
241 |
+
class ForcedWNConv1d(nn.Module):
|
242 |
+
def __init__(self, in_channels, out_channels, kernel_size=1):
|
243 |
+
super().__init__()
|
244 |
+
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))
|
245 |
+
|
246 |
+
def forward(self, x):
|
247 |
+
if self.training:
|
248 |
+
with torch.no_grad():
|
249 |
+
self.weight.copy_(normalize(self.weight))
|
250 |
+
|
251 |
+
fan_in = self.weight[0].numel()
|
252 |
+
|
253 |
+
w = normalize(self.weight) / math.sqrt(fan_in)
|
254 |
+
|
255 |
+
return F.conv1d(x, w, padding='same')
|
256 |
+
|
257 |
+
# Kernels
|
258 |
+
|
259 |
+
use_compile = True
|
260 |
+
|
261 |
+
def compile(function, *args, **kwargs):
|
262 |
+
if not use_compile:
|
263 |
+
return function
|
264 |
+
try:
|
265 |
+
return torch.compile(function, *args, **kwargs)
|
266 |
+
except RuntimeError:
|
267 |
+
return function
|
268 |
+
|
269 |
+
|
270 |
+
@compile
|
271 |
+
def linear_geglu(x, weight, bias=None):
|
272 |
+
x = x @ weight.mT
|
273 |
+
if bias is not None:
|
274 |
+
x = x + bias
|
275 |
+
x, gate = x.chunk(2, dim=-1)
|
276 |
+
return x * F.gelu(gate)
|
277 |
+
|
278 |
+
|
279 |
+
@compile
|
280 |
+
def rms_norm(x, scale, eps):
|
281 |
+
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
282 |
+
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
283 |
+
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
284 |
+
return x * scale.to(x.dtype)
|
285 |
+
|
286 |
+
# Layers
|
287 |
+
|
288 |
+
|
289 |
+
class LinearGEGLU(nn.Linear):
|
290 |
+
def __init__(self, in_features, out_features, bias=True):
|
291 |
+
super().__init__(in_features, out_features * 2, bias=bias)
|
292 |
+
self.out_features = out_features
|
293 |
+
|
294 |
+
def forward(self, x):
|
295 |
+
return linear_geglu(x, self.weight, self.bias)
|
296 |
+
|
297 |
+
|
298 |
+
class RMSNorm(nn.Module):
|
299 |
+
def __init__(self, shape, fix_scale = False, eps=1e-6):
|
300 |
+
super().__init__()
|
301 |
+
self.eps = eps
|
302 |
+
|
303 |
+
if fix_scale:
|
304 |
+
self.register_buffer("scale", torch.ones(shape))
|
305 |
+
else:
|
306 |
+
self.scale = nn.Parameter(torch.ones(shape))
|
307 |
+
|
308 |
+
def extra_repr(self):
|
309 |
+
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
|
310 |
+
|
311 |
+
def forward(self, x):
|
312 |
+
return rms_norm(x, self.scale, self.eps)
|
313 |
+
|
314 |
+
|
315 |
+
# jit script make it 1.4x faster and save GPU memory
|
316 |
+
@torch.jit.script
|
317 |
+
def snake_beta(x, alpha, beta):
|
318 |
+
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
319 |
+
|
320 |
+
# try:
|
321 |
+
# snake_beta = torch.compile(snake_beta)
|
322 |
+
# except RuntimeError:
|
323 |
+
# pass
|
324 |
+
|
325 |
+
|
326 |
+
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
|
327 |
+
# License available in LICENSES/LICENSE_NVIDIA.txt
|
328 |
+
class SnakeBeta(nn.Module):
|
329 |
+
|
330 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
331 |
+
super(SnakeBeta, self).__init__()
|
332 |
+
self.in_features = in_features
|
333 |
+
|
334 |
+
# initialize alpha
|
335 |
+
self.alpha_logscale = alpha_logscale
|
336 |
+
if self.alpha_logscale:
|
337 |
+
# log scale alphas initialized to zeros
|
338 |
+
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
339 |
+
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
340 |
+
else:
|
341 |
+
# linear scale alphas initialized to ones
|
342 |
+
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
343 |
+
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
344 |
+
|
345 |
+
self.alpha.requires_grad = alpha_trainable
|
346 |
+
self.beta.requires_grad = alpha_trainable
|
347 |
+
|
348 |
+
# self.no_div_by_zero = 0.000000001
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1)
|
352 |
+
# line up with x to [B, C, T]
|
353 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
354 |
+
if self.alpha_logscale:
|
355 |
+
alpha = torch.exp(alpha)
|
356 |
+
beta = torch.exp(beta)
|
357 |
+
x = snake_beta(x, alpha, beta)
|
358 |
+
|
359 |
+
return x
|
vae_modules/stable_vae/models/bottleneck.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from vector_quantize_pytorch import ResidualVQ, FSQ
|
7 |
+
from .nn.quantize import ResidualVectorQuantize as DACResidualVQ
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
def __init__(self, is_discrete: bool = False):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
self.is_discrete = is_discrete
|
15 |
+
|
16 |
+
def encode(self, x, return_info=False, **kwargs):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
def decode(self, x):
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
|
23 |
+
class DiscreteBottleneck(Bottleneck):
|
24 |
+
def __init__(self, num_quantizers, codebook_size, tokens_id):
|
25 |
+
super().__init__(is_discrete=True)
|
26 |
+
|
27 |
+
self.num_quantizers = num_quantizers
|
28 |
+
self.codebook_size = codebook_size
|
29 |
+
self.tokens_id = tokens_id
|
30 |
+
|
31 |
+
def decode_tokens(self, codes, **kwargs):
|
32 |
+
raise NotImplementedError
|
33 |
+
|
34 |
+
|
35 |
+
class TanhBottleneck(Bottleneck):
|
36 |
+
def __init__(self):
|
37 |
+
super().__init__(is_discrete=False)
|
38 |
+
self.tanh = nn.Tanh()
|
39 |
+
|
40 |
+
def encode(self, x, return_info=False):
|
41 |
+
info = {}
|
42 |
+
|
43 |
+
x = torch.tanh(x)
|
44 |
+
|
45 |
+
if return_info:
|
46 |
+
return x, info
|
47 |
+
else:
|
48 |
+
return x
|
49 |
+
|
50 |
+
def decode(self, x):
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
@torch.jit.script
|
55 |
+
def vae_sample_kl(mean, scale):
|
56 |
+
stdev = nn.functional.softplus(scale) + 1e-4
|
57 |
+
var = stdev * stdev
|
58 |
+
logvar = torch.log(var)
|
59 |
+
latents = torch.randn_like(mean) * stdev + mean
|
60 |
+
|
61 |
+
kl = (mean * mean + var - logvar - 1).sum(1).mean()
|
62 |
+
|
63 |
+
return latents, kl
|
64 |
+
|
65 |
+
|
66 |
+
@torch.jit.script
|
67 |
+
def vae_sample(mean, scale):
|
68 |
+
stdev = nn.functional.softplus(scale) + 1e-4
|
69 |
+
latents = torch.randn_like(mean) * stdev + mean
|
70 |
+
return latents
|
71 |
+
|
72 |
+
|
73 |
+
class VAEBottleneck(Bottleneck):
|
74 |
+
def __init__(self):
|
75 |
+
super().__init__(is_discrete=False)
|
76 |
+
|
77 |
+
def encode(self, x, return_info=False, **kwargs):
|
78 |
+
mean, scale = x.chunk(2, dim=1)
|
79 |
+
|
80 |
+
if return_info:
|
81 |
+
info = {}
|
82 |
+
x, kl = vae_sample_kl(mean, scale)
|
83 |
+
info["kl"] = kl
|
84 |
+
return x, info
|
85 |
+
else:
|
86 |
+
x = vae_sample(mean, scale)
|
87 |
+
return x
|
88 |
+
|
89 |
+
def decode(self, x):
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
def compute_mean_kernel(x, y):
|
94 |
+
kernel_input = (x[:, None] - y[None]).pow(2).mean(2) / x.shape[-1]
|
95 |
+
return torch.exp(-kernel_input).mean()
|
96 |
+
|
97 |
+
|
98 |
+
def compute_mmd(latents):
|
99 |
+
latents_reshaped = latents.permute(0, 2, 1).reshape(-1, latents.shape[1])
|
100 |
+
noise = torch.randn_like(latents_reshaped)
|
101 |
+
|
102 |
+
latents_kernel = compute_mean_kernel(latents_reshaped, latents_reshaped)
|
103 |
+
noise_kernel = compute_mean_kernel(noise, noise)
|
104 |
+
latents_noise_kernel = compute_mean_kernel(latents_reshaped, noise)
|
105 |
+
|
106 |
+
mmd = latents_kernel + noise_kernel - 2 * latents_noise_kernel
|
107 |
+
return mmd.mean()
|
108 |
+
|
109 |
+
|
110 |
+
class WassersteinBottleneck(Bottleneck):
|
111 |
+
def __init__(self, noise_augment_dim: int = 0):
|
112 |
+
super().__init__(is_discrete=False)
|
113 |
+
|
114 |
+
self.noise_augment_dim = noise_augment_dim
|
115 |
+
|
116 |
+
def encode(self, x, return_info=False):
|
117 |
+
info = {}
|
118 |
+
|
119 |
+
if self.training and return_info:
|
120 |
+
mmd = compute_mmd(x)
|
121 |
+
info["mmd"] = mmd
|
122 |
+
|
123 |
+
if return_info:
|
124 |
+
return x, info
|
125 |
+
|
126 |
+
return x
|
127 |
+
|
128 |
+
def decode(self, x):
|
129 |
+
|
130 |
+
if self.noise_augment_dim > 0:
|
131 |
+
noise = torch.randn(x.shape[0], self.noise_augment_dim,
|
132 |
+
x.shape[-1]).type_as(x)
|
133 |
+
x = torch.cat([x, noise], dim=1)
|
134 |
+
|
135 |
+
return x
|
136 |
+
|
137 |
+
|
138 |
+
class L2Bottleneck(Bottleneck):
|
139 |
+
def __init__(self):
|
140 |
+
super().__init__(is_discrete=False)
|
141 |
+
|
142 |
+
def encode(self, x, return_info=False):
|
143 |
+
info = {}
|
144 |
+
|
145 |
+
x = F.normalize(x, dim=1)
|
146 |
+
|
147 |
+
if return_info:
|
148 |
+
return x, info
|
149 |
+
else:
|
150 |
+
return x
|
151 |
+
|
152 |
+
def decode(self, x):
|
153 |
+
return F.normalize(x, dim=1)
|
154 |
+
|
155 |
+
|
156 |
+
class RVQBottleneck(DiscreteBottleneck):
|
157 |
+
def __init__(self, **quantizer_kwargs):
|
158 |
+
super().__init__(num_quantizers = quantizer_kwargs["num_quantizers"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "quantizer_indices")
|
159 |
+
self.quantizer = ResidualVQ(**quantizer_kwargs)
|
160 |
+
self.num_quantizers = quantizer_kwargs["num_quantizers"]
|
161 |
+
|
162 |
+
def encode(self, x, return_info=False, **kwargs):
|
163 |
+
info = {}
|
164 |
+
|
165 |
+
x = rearrange(x, "b c n -> b n c")
|
166 |
+
x, indices, loss = self.quantizer(x)
|
167 |
+
x = rearrange(x, "b n c -> b c n")
|
168 |
+
|
169 |
+
info["quantizer_indices"] = indices
|
170 |
+
info["quantizer_loss"] = loss.mean()
|
171 |
+
|
172 |
+
if return_info:
|
173 |
+
return x, info
|
174 |
+
else:
|
175 |
+
return x
|
176 |
+
|
177 |
+
def decode(self, x):
|
178 |
+
return x
|
179 |
+
|
180 |
+
def decode_tokens(self, codes, **kwargs):
|
181 |
+
latents = self.quantizer.get_outputs_from_indices(codes)
|
182 |
+
|
183 |
+
return self.decode(latents, **kwargs)
|
184 |
+
|
185 |
+
|
186 |
+
class RVQVAEBottleneck(DiscreteBottleneck):
|
187 |
+
def __init__(self, **quantizer_kwargs):
|
188 |
+
super().__init__(num_quantizers = quantizer_kwargs["num_quantizers"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "quantizer_indices")
|
189 |
+
self.quantizer = ResidualVQ(**quantizer_kwargs)
|
190 |
+
self.num_quantizers = quantizer_kwargs["num_quantizers"]
|
191 |
+
|
192 |
+
def encode(self, x, return_info=False):
|
193 |
+
info = {}
|
194 |
+
|
195 |
+
x, kl = vae_sample(*x.chunk(2, dim=1))
|
196 |
+
|
197 |
+
info["kl"] = kl
|
198 |
+
|
199 |
+
x = rearrange(x, "b c n -> b n c")
|
200 |
+
x, indices, loss = self.quantizer(x)
|
201 |
+
x = rearrange(x, "b n c -> b c n")
|
202 |
+
|
203 |
+
info["quantizer_indices"] = indices
|
204 |
+
info["quantizer_loss"] = loss.mean()
|
205 |
+
|
206 |
+
if return_info:
|
207 |
+
return x, info
|
208 |
+
else:
|
209 |
+
return x
|
210 |
+
|
211 |
+
def decode(self, x):
|
212 |
+
return x
|
213 |
+
|
214 |
+
def decode_tokens(self, codes, **kwargs):
|
215 |
+
latents = self.quantizer.get_outputs_from_indices(codes)
|
216 |
+
|
217 |
+
return self.decode(latents, **kwargs)
|
218 |
+
|
219 |
+
|
220 |
+
class DACRVQBottleneck(DiscreteBottleneck):
|
221 |
+
def __init__(self, quantize_on_decode=False, **quantizer_kwargs):
|
222 |
+
super().__init__(num_quantizers = quantizer_kwargs["n_codebooks"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "codes")
|
223 |
+
self.quantizer = DACResidualVQ(**quantizer_kwargs)
|
224 |
+
self.num_quantizers = quantizer_kwargs["n_codebooks"]
|
225 |
+
self.quantize_on_decode = quantize_on_decode
|
226 |
+
|
227 |
+
def encode(self, x, return_info=False, **kwargs):
|
228 |
+
info = {}
|
229 |
+
|
230 |
+
info["pre_quantizer"] = x
|
231 |
+
|
232 |
+
if self.quantize_on_decode:
|
233 |
+
return x, info if return_info else x
|
234 |
+
|
235 |
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(x, **kwargs)
|
236 |
+
|
237 |
+
output = {
|
238 |
+
"z": z,
|
239 |
+
"codes": codes,
|
240 |
+
"latents": latents,
|
241 |
+
"vq/commitment_loss": commitment_loss,
|
242 |
+
"vq/codebook_loss": codebook_loss,
|
243 |
+
}
|
244 |
+
|
245 |
+
output["vq/commitment_loss"] /= self.num_quantizers
|
246 |
+
output["vq/codebook_loss"] /= self.num_quantizers
|
247 |
+
|
248 |
+
info.update(output)
|
249 |
+
|
250 |
+
if return_info:
|
251 |
+
return output["z"], info
|
252 |
+
|
253 |
+
return output["z"]
|
254 |
+
|
255 |
+
def decode(self, x):
|
256 |
+
|
257 |
+
if self.quantize_on_decode:
|
258 |
+
x = self.quantizer(x)[0]
|
259 |
+
|
260 |
+
return x
|
261 |
+
|
262 |
+
def decode_tokens(self, codes, **kwargs):
|
263 |
+
latents, _, _ = self.quantizer.from_codes(codes)
|
264 |
+
|
265 |
+
return self.decode(latents, **kwargs)
|
266 |
+
|
267 |
+
|
268 |
+
class DACRVQVAEBottleneck(DiscreteBottleneck):
|
269 |
+
def __init__(self, quantize_on_decode=False, **quantizer_kwargs):
|
270 |
+
super().__init__(num_quantizers = quantizer_kwargs["n_codebooks"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "codes")
|
271 |
+
self.quantizer = DACResidualVQ(**quantizer_kwargs)
|
272 |
+
self.num_quantizers = quantizer_kwargs["n_codebooks"]
|
273 |
+
self.quantize_on_decode = quantize_on_decode
|
274 |
+
|
275 |
+
def encode(self, x, return_info=False, n_quantizers: int = None):
|
276 |
+
info = {}
|
277 |
+
|
278 |
+
mean, scale = x.chunk(2, dim=1)
|
279 |
+
|
280 |
+
x, kl = vae_sample(mean, scale)
|
281 |
+
|
282 |
+
info["pre_quantizer"] = x
|
283 |
+
info["kl"] = kl
|
284 |
+
|
285 |
+
if self.quantize_on_decode:
|
286 |
+
return x, info if return_info else x
|
287 |
+
|
288 |
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(x, n_quantizers=n_quantizers)
|
289 |
+
|
290 |
+
output = {
|
291 |
+
"z": z,
|
292 |
+
"codes": codes,
|
293 |
+
"latents": latents,
|
294 |
+
"vq/commitment_loss": commitment_loss,
|
295 |
+
"vq/codebook_loss": codebook_loss,
|
296 |
+
}
|
297 |
+
|
298 |
+
output["vq/commitment_loss"] /= self.num_quantizers
|
299 |
+
output["vq/codebook_loss"] /= self.num_quantizers
|
300 |
+
|
301 |
+
info.update(output)
|
302 |
+
|
303 |
+
if return_info:
|
304 |
+
return output["z"], info
|
305 |
+
|
306 |
+
return output["z"]
|
307 |
+
|
308 |
+
def decode(self, x):
|
309 |
+
|
310 |
+
if self.quantize_on_decode:
|
311 |
+
x = self.quantizer(x)[0]
|
312 |
+
|
313 |
+
return x
|
314 |
+
|
315 |
+
def decode_tokens(self, codes, **kwargs):
|
316 |
+
latents, _, _ = self.quantizer.from_codes(codes)
|
317 |
+
|
318 |
+
return self.decode(latents, **kwargs)
|
319 |
+
|
320 |
+
|
321 |
+
class FSQBottleneck(DiscreteBottleneck):
|
322 |
+
def __init__(self, dim, levels):
|
323 |
+
super().__init__(num_quantizers = 1, codebook_size = levels ** dim, tokens_id = "quantizer_indices")
|
324 |
+
self.quantizer = FSQ(levels=[levels] * dim)
|
325 |
+
|
326 |
+
def encode(self, x, return_info=False):
|
327 |
+
info = {}
|
328 |
+
|
329 |
+
x = rearrange(x, "b c n -> b n c")
|
330 |
+
x, indices = self.quantizer(x)
|
331 |
+
x = rearrange(x, "b n c -> b c n")
|
332 |
+
|
333 |
+
info["quantizer_indices"] = indices
|
334 |
+
|
335 |
+
if return_info:
|
336 |
+
return x, info
|
337 |
+
else:
|
338 |
+
return x
|
339 |
+
|
340 |
+
def decode(self, x):
|
341 |
+
return x
|
342 |
+
|
343 |
+
def decode_tokens(self, tokens, **kwargs):
|
344 |
+
latents = self.quantizer.indices_to_codes(tokens)
|
345 |
+
|
346 |
+
return self.decode(latents, **kwargs)
|
vae_modules/stable_vae/models/factory.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def create_model_from_config(model_config):
|
4 |
+
model_type = model_config.get('model_type', None)
|
5 |
+
|
6 |
+
assert model_type is not None, 'model_type must be specified in model config'
|
7 |
+
|
8 |
+
if model_type == 'autoencoder':
|
9 |
+
from .autoencoders import create_autoencoder_from_config
|
10 |
+
return create_autoencoder_from_config(model_config)
|
11 |
+
elif model_type == 'diffusion_uncond':
|
12 |
+
from .diffusion import create_diffusion_uncond_from_config
|
13 |
+
return create_diffusion_uncond_from_config(model_config)
|
14 |
+
elif model_type == 'diffusion_cond' or model_type == 'diffusion_cond_inpaint' or model_type == "diffusion_prior":
|
15 |
+
from .diffusion import create_diffusion_cond_from_config
|
16 |
+
return create_diffusion_cond_from_config(model_config)
|
17 |
+
elif model_type == 'diffusion_autoencoder':
|
18 |
+
from .autoencoders import create_diffAE_from_config
|
19 |
+
return create_diffAE_from_config(model_config)
|
20 |
+
elif model_type == 'lm':
|
21 |
+
from .lm import create_audio_lm_from_config
|
22 |
+
return create_audio_lm_from_config(model_config)
|
23 |
+
else:
|
24 |
+
raise NotImplementedError(f'Unknown model type: {model_type}')
|
25 |
+
|
26 |
+
def create_model_from_config_path(model_config_path):
|
27 |
+
with open(model_config_path) as f:
|
28 |
+
model_config = json.load(f)
|
29 |
+
|
30 |
+
return create_model_from_config(model_config)
|
31 |
+
|
32 |
+
def create_pretransform_from_config(pretransform_config, sample_rate):
|
33 |
+
pretransform_type = pretransform_config.get('type', None)
|
34 |
+
|
35 |
+
assert pretransform_type is not None, 'type must be specified in pretransform config'
|
36 |
+
|
37 |
+
if pretransform_type == 'autoencoder':
|
38 |
+
from .autoencoders import create_autoencoder_from_config
|
39 |
+
from .pretransforms import AutoencoderPretransform
|
40 |
+
|
41 |
+
# Create fake top-level config to pass sample rate to autoencoder constructor
|
42 |
+
# This is a bit of a hack but it keeps us from re-defining the sample rate in the config
|
43 |
+
autoencoder_config = {"sample_rate": sample_rate, "model": pretransform_config["config"]}
|
44 |
+
autoencoder = create_autoencoder_from_config(autoencoder_config)
|
45 |
+
|
46 |
+
scale = pretransform_config.get("scale", 1.0)
|
47 |
+
model_half = pretransform_config.get("model_half", False)
|
48 |
+
iterate_batch = pretransform_config.get("iterate_batch", False)
|
49 |
+
chunked = pretransform_config.get("chunked", False)
|
50 |
+
|
51 |
+
pretransform = AutoencoderPretransform(autoencoder, scale=scale, model_half=model_half, iterate_batch=iterate_batch, chunked=chunked)
|
52 |
+
elif pretransform_type == 'wavelet':
|
53 |
+
from .pretransforms import WaveletPretransform
|
54 |
+
|
55 |
+
wavelet_config = pretransform_config["config"]
|
56 |
+
channels = wavelet_config["channels"]
|
57 |
+
levels = wavelet_config["levels"]
|
58 |
+
wavelet = wavelet_config["wavelet"]
|
59 |
+
|
60 |
+
pretransform = WaveletPretransform(channels, levels, wavelet)
|
61 |
+
elif pretransform_type == 'pqmf':
|
62 |
+
from .pretransforms import PQMFPretransform
|
63 |
+
pqmf_config = pretransform_config["config"]
|
64 |
+
pretransform = PQMFPretransform(**pqmf_config)
|
65 |
+
elif pretransform_type == 'dac_pretrained':
|
66 |
+
from .pretransforms import PretrainedDACPretransform
|
67 |
+
pretrained_dac_config = pretransform_config["config"]
|
68 |
+
pretransform = PretrainedDACPretransform(**pretrained_dac_config)
|
69 |
+
elif pretransform_type == "audiocraft_pretrained":
|
70 |
+
from .pretransforms import AudiocraftCompressionPretransform
|
71 |
+
|
72 |
+
audiocraft_config = pretransform_config["config"]
|
73 |
+
pretransform = AudiocraftCompressionPretransform(**audiocraft_config)
|
74 |
+
else:
|
75 |
+
raise NotImplementedError(f'Unknown pretransform type: {pretransform_type}')
|
76 |
+
|
77 |
+
enable_grad = pretransform_config.get('enable_grad', False)
|
78 |
+
pretransform.enable_grad = enable_grad
|
79 |
+
|
80 |
+
pretransform.eval().requires_grad_(pretransform.enable_grad)
|
81 |
+
|
82 |
+
return pretransform
|
83 |
+
|
84 |
+
def create_bottleneck_from_config(bottleneck_config):
|
85 |
+
bottleneck_type = bottleneck_config.get('type', None)
|
86 |
+
|
87 |
+
assert bottleneck_type is not None, 'type must be specified in bottleneck config'
|
88 |
+
|
89 |
+
if bottleneck_type == 'tanh':
|
90 |
+
from .bottleneck import TanhBottleneck
|
91 |
+
bottleneck = TanhBottleneck()
|
92 |
+
elif bottleneck_type == 'vae':
|
93 |
+
from .bottleneck import VAEBottleneck
|
94 |
+
bottleneck = VAEBottleneck()
|
95 |
+
elif bottleneck_type == 'rvq':
|
96 |
+
from .bottleneck import RVQBottleneck
|
97 |
+
|
98 |
+
quantizer_params = {
|
99 |
+
"dim": 128,
|
100 |
+
"codebook_size": 1024,
|
101 |
+
"num_quantizers": 8,
|
102 |
+
"decay": 0.99,
|
103 |
+
"kmeans_init": True,
|
104 |
+
"kmeans_iters": 50,
|
105 |
+
"threshold_ema_dead_code": 2,
|
106 |
+
}
|
107 |
+
|
108 |
+
quantizer_params.update(bottleneck_config["config"])
|
109 |
+
|
110 |
+
bottleneck = RVQBottleneck(**quantizer_params)
|
111 |
+
elif bottleneck_type == "dac_rvq":
|
112 |
+
from .bottleneck import DACRVQBottleneck
|
113 |
+
|
114 |
+
bottleneck = DACRVQBottleneck(**bottleneck_config["config"])
|
115 |
+
|
116 |
+
elif bottleneck_type == 'rvq_vae':
|
117 |
+
from .bottleneck import RVQVAEBottleneck
|
118 |
+
|
119 |
+
quantizer_params = {
|
120 |
+
"dim": 128,
|
121 |
+
"codebook_size": 1024,
|
122 |
+
"num_quantizers": 8,
|
123 |
+
"decay": 0.99,
|
124 |
+
"kmeans_init": True,
|
125 |
+
"kmeans_iters": 50,
|
126 |
+
"threshold_ema_dead_code": 2,
|
127 |
+
}
|
128 |
+
|
129 |
+
quantizer_params.update(bottleneck_config["config"])
|
130 |
+
|
131 |
+
bottleneck = RVQVAEBottleneck(**quantizer_params)
|
132 |
+
|
133 |
+
elif bottleneck_type == 'dac_rvq_vae':
|
134 |
+
from .bottleneck import DACRVQVAEBottleneck
|
135 |
+
bottleneck = DACRVQVAEBottleneck(**bottleneck_config["config"])
|
136 |
+
elif bottleneck_type == 'l2_norm':
|
137 |
+
from .bottleneck import L2Bottleneck
|
138 |
+
bottleneck = L2Bottleneck()
|
139 |
+
elif bottleneck_type == "wasserstein":
|
140 |
+
from .bottleneck import WassersteinBottleneck
|
141 |
+
bottleneck = WassersteinBottleneck(**bottleneck_config.get("config", {}))
|
142 |
+
elif bottleneck_type == "fsq":
|
143 |
+
from .bottleneck import FSQBottleneck
|
144 |
+
bottleneck = FSQBottleneck(**bottleneck_config["config"])
|
145 |
+
else:
|
146 |
+
raise NotImplementedError(f'Unknown bottleneck type: {bottleneck_type}')
|
147 |
+
|
148 |
+
requires_grad = bottleneck_config.get('requires_grad', True)
|
149 |
+
if not requires_grad:
|
150 |
+
for param in bottleneck.parameters():
|
151 |
+
param.requires_grad = False
|
152 |
+
|
153 |
+
return bottleneck
|
vae_modules/stable_vae/models/nn/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import layers
|
2 |
+
from . import loss
|
3 |
+
from . import quantize
|
vae_modules/stable_vae/models/nn/layers.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange
|
6 |
+
from torch.nn.utils import weight_norm
|
7 |
+
|
8 |
+
|
9 |
+
def WNConv1d(*args, **kwargs):
|
10 |
+
return weight_norm(nn.Conv1d(*args, **kwargs))
|
11 |
+
|
12 |
+
|
13 |
+
def WNConvTranspose1d(*args, **kwargs):
|
14 |
+
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
|
15 |
+
|
16 |
+
|
17 |
+
# Scripting this brings model speed up 1.4x
|
18 |
+
@torch.jit.script
|
19 |
+
def snake(x, alpha):
|
20 |
+
shape = x.shape
|
21 |
+
x = x.reshape(shape[0], shape[1], -1)
|
22 |
+
x = x + (alpha + 1e-9).reciprocal() * torch.sin(alpha * x).pow(2)
|
23 |
+
x = x.reshape(shape)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
class Snake1d(nn.Module):
|
28 |
+
def __init__(self, channels):
|
29 |
+
super().__init__()
|
30 |
+
self.alpha = nn.Parameter(torch.ones(1, channels, 1))
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return snake(x, self.alpha)
|
vae_modules/stable_vae/models/nn/loss.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from audiotools import AudioSignal
|
7 |
+
from audiotools import STFTParams
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
|
11 |
+
class L1Loss(nn.L1Loss):
|
12 |
+
"""L1 Loss between AudioSignals. Defaults
|
13 |
+
to comparing ``audio_data``, but any
|
14 |
+
attribute of an AudioSignal can be used.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
attribute : str, optional
|
19 |
+
Attribute of signal to compare, defaults to ``audio_data``.
|
20 |
+
weight : float, optional
|
21 |
+
Weight of this loss, defaults to 1.0.
|
22 |
+
|
23 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
|
27 |
+
self.attribute = attribute
|
28 |
+
self.weight = weight
|
29 |
+
super().__init__(**kwargs)
|
30 |
+
|
31 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
32 |
+
"""
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
x : AudioSignal
|
36 |
+
Estimate AudioSignal
|
37 |
+
y : AudioSignal
|
38 |
+
Reference AudioSignal
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
torch.Tensor
|
43 |
+
L1 loss between AudioSignal attributes.
|
44 |
+
"""
|
45 |
+
if isinstance(x, AudioSignal):
|
46 |
+
x = getattr(x, self.attribute)
|
47 |
+
y = getattr(y, self.attribute)
|
48 |
+
return super().forward(x, y)
|
49 |
+
|
50 |
+
|
51 |
+
class SISDRLoss(nn.Module):
|
52 |
+
"""
|
53 |
+
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
|
54 |
+
of estimated and reference audio signals or aligned features.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
scaling : int, optional
|
59 |
+
Whether to use scale-invariant (True) or
|
60 |
+
signal-to-noise ratio (False), by default True
|
61 |
+
reduction : str, optional
|
62 |
+
How to reduce across the batch (either 'mean',
|
63 |
+
'sum', or none).], by default ' mean'
|
64 |
+
zero_mean : int, optional
|
65 |
+
Zero mean the references and estimates before
|
66 |
+
computing the loss, by default True
|
67 |
+
clip_min : int, optional
|
68 |
+
The minimum possible loss value. Helps network
|
69 |
+
to not focus on making already good examples better, by default None
|
70 |
+
weight : float, optional
|
71 |
+
Weight of this loss, defaults to 1.0.
|
72 |
+
|
73 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
scaling: int = True,
|
79 |
+
reduction: str = "mean",
|
80 |
+
zero_mean: int = True,
|
81 |
+
clip_min: int = None,
|
82 |
+
weight: float = 1.0,
|
83 |
+
):
|
84 |
+
self.scaling = scaling
|
85 |
+
self.reduction = reduction
|
86 |
+
self.zero_mean = zero_mean
|
87 |
+
self.clip_min = clip_min
|
88 |
+
self.weight = weight
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
92 |
+
eps = 1e-8
|
93 |
+
# nb, nc, nt
|
94 |
+
if isinstance(x, AudioSignal):
|
95 |
+
references = x.audio_data
|
96 |
+
estimates = y.audio_data
|
97 |
+
else:
|
98 |
+
references = x
|
99 |
+
estimates = y
|
100 |
+
|
101 |
+
nb = references.shape[0]
|
102 |
+
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
|
103 |
+
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
|
104 |
+
|
105 |
+
# samples now on axis 1
|
106 |
+
if self.zero_mean:
|
107 |
+
mean_reference = references.mean(dim=1, keepdim=True)
|
108 |
+
mean_estimate = estimates.mean(dim=1, keepdim=True)
|
109 |
+
else:
|
110 |
+
mean_reference = 0
|
111 |
+
mean_estimate = 0
|
112 |
+
|
113 |
+
_references = references - mean_reference
|
114 |
+
_estimates = estimates - mean_estimate
|
115 |
+
|
116 |
+
references_projection = (_references**2).sum(dim=-2) + eps
|
117 |
+
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
|
118 |
+
|
119 |
+
scale = (
|
120 |
+
(references_on_estimates / references_projection).unsqueeze(1)
|
121 |
+
if self.scaling
|
122 |
+
else 1
|
123 |
+
)
|
124 |
+
|
125 |
+
e_true = scale * _references
|
126 |
+
e_res = _estimates - e_true
|
127 |
+
|
128 |
+
signal = (e_true**2).sum(dim=1)
|
129 |
+
noise = (e_res**2).sum(dim=1)
|
130 |
+
sdr = -10 * torch.log10(signal / noise + eps)
|
131 |
+
|
132 |
+
if self.clip_min is not None:
|
133 |
+
sdr = torch.clamp(sdr, min=self.clip_min)
|
134 |
+
|
135 |
+
if self.reduction == "mean":
|
136 |
+
sdr = sdr.mean()
|
137 |
+
elif self.reduction == "sum":
|
138 |
+
sdr = sdr.sum()
|
139 |
+
return sdr
|
140 |
+
|
141 |
+
|
142 |
+
class MultiScaleSTFTLoss(nn.Module):
|
143 |
+
"""Computes the multi-scale STFT loss from [1].
|
144 |
+
|
145 |
+
Parameters
|
146 |
+
----------
|
147 |
+
window_lengths : List[int], optional
|
148 |
+
Length of each window of each STFT, by default [2048, 512]
|
149 |
+
loss_fn : typing.Callable, optional
|
150 |
+
How to compare each loss, by default nn.L1Loss()
|
151 |
+
clamp_eps : float, optional
|
152 |
+
Clamp on the log magnitude, below, by default 1e-5
|
153 |
+
mag_weight : float, optional
|
154 |
+
Weight of raw magnitude portion of loss, by default 1.0
|
155 |
+
log_weight : float, optional
|
156 |
+
Weight of log magnitude portion of loss, by default 1.0
|
157 |
+
pow : float, optional
|
158 |
+
Power to raise magnitude to before taking log, by default 2.0
|
159 |
+
weight : float, optional
|
160 |
+
Weight of this loss, by default 1.0
|
161 |
+
match_stride : bool, optional
|
162 |
+
Whether to match the stride of convolutional layers, by default False
|
163 |
+
|
164 |
+
References
|
165 |
+
----------
|
166 |
+
|
167 |
+
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
|
168 |
+
"DDSP: Differentiable Digital Signal Processing."
|
169 |
+
International Conference on Learning Representations. 2019.
|
170 |
+
|
171 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
172 |
+
"""
|
173 |
+
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
window_lengths: List[int] = [2048, 512],
|
177 |
+
loss_fn: typing.Callable = nn.L1Loss(),
|
178 |
+
clamp_eps: float = 1e-5,
|
179 |
+
mag_weight: float = 1.0,
|
180 |
+
log_weight: float = 1.0,
|
181 |
+
pow: float = 2.0,
|
182 |
+
weight: float = 1.0,
|
183 |
+
match_stride: bool = False,
|
184 |
+
window_type: str = None,
|
185 |
+
):
|
186 |
+
super().__init__()
|
187 |
+
self.stft_params = [
|
188 |
+
STFTParams(
|
189 |
+
window_length=w,
|
190 |
+
hop_length=w // 4,
|
191 |
+
match_stride=match_stride,
|
192 |
+
window_type=window_type,
|
193 |
+
)
|
194 |
+
for w in window_lengths
|
195 |
+
]
|
196 |
+
self.loss_fn = loss_fn
|
197 |
+
self.log_weight = log_weight
|
198 |
+
self.mag_weight = mag_weight
|
199 |
+
self.clamp_eps = clamp_eps
|
200 |
+
self.weight = weight
|
201 |
+
self.pow = pow
|
202 |
+
|
203 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
204 |
+
"""Computes multi-scale STFT between an estimate and a reference
|
205 |
+
signal.
|
206 |
+
|
207 |
+
Parameters
|
208 |
+
----------
|
209 |
+
x : AudioSignal
|
210 |
+
Estimate signal
|
211 |
+
y : AudioSignal
|
212 |
+
Reference signal
|
213 |
+
|
214 |
+
Returns
|
215 |
+
-------
|
216 |
+
torch.Tensor
|
217 |
+
Multi-scale STFT loss.
|
218 |
+
"""
|
219 |
+
loss = 0.0
|
220 |
+
for s in self.stft_params:
|
221 |
+
x.stft(s.window_length, s.hop_length, s.window_type)
|
222 |
+
y.stft(s.window_length, s.hop_length, s.window_type)
|
223 |
+
loss += self.log_weight * self.loss_fn(
|
224 |
+
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
225 |
+
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
226 |
+
)
|
227 |
+
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
|
228 |
+
return loss
|
229 |
+
|
230 |
+
|
231 |
+
class MelSpectrogramLoss(nn.Module):
|
232 |
+
"""Compute distance between mel spectrograms. Can be used
|
233 |
+
in a multi-scale way.
|
234 |
+
|
235 |
+
Parameters
|
236 |
+
----------
|
237 |
+
n_mels : List[int]
|
238 |
+
Number of mels per STFT, by default [150, 80],
|
239 |
+
window_lengths : List[int], optional
|
240 |
+
Length of each window of each STFT, by default [2048, 512]
|
241 |
+
loss_fn : typing.Callable, optional
|
242 |
+
How to compare each loss, by default nn.L1Loss()
|
243 |
+
clamp_eps : float, optional
|
244 |
+
Clamp on the log magnitude, below, by default 1e-5
|
245 |
+
mag_weight : float, optional
|
246 |
+
Weight of raw magnitude portion of loss, by default 1.0
|
247 |
+
log_weight : float, optional
|
248 |
+
Weight of log magnitude portion of loss, by default 1.0
|
249 |
+
pow : float, optional
|
250 |
+
Power to raise magnitude to before taking log, by default 2.0
|
251 |
+
weight : float, optional
|
252 |
+
Weight of this loss, by default 1.0
|
253 |
+
match_stride : bool, optional
|
254 |
+
Whether to match the stride of convolutional layers, by default False
|
255 |
+
|
256 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
257 |
+
"""
|
258 |
+
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
n_mels: List[int] = [150, 80],
|
262 |
+
window_lengths: List[int] = [2048, 512],
|
263 |
+
loss_fn: typing.Callable = nn.L1Loss(),
|
264 |
+
clamp_eps: float = 1e-5,
|
265 |
+
mag_weight: float = 1.0,
|
266 |
+
log_weight: float = 1.0,
|
267 |
+
pow: float = 2.0,
|
268 |
+
weight: float = 1.0,
|
269 |
+
match_stride: bool = False,
|
270 |
+
mel_fmin: List[float] = [0.0, 0.0],
|
271 |
+
mel_fmax: List[float] = [None, None],
|
272 |
+
window_type: str = None,
|
273 |
+
):
|
274 |
+
super().__init__()
|
275 |
+
self.stft_params = [
|
276 |
+
STFTParams(
|
277 |
+
window_length=w,
|
278 |
+
hop_length=w // 4,
|
279 |
+
match_stride=match_stride,
|
280 |
+
window_type=window_type,
|
281 |
+
)
|
282 |
+
for w in window_lengths
|
283 |
+
]
|
284 |
+
self.n_mels = n_mels
|
285 |
+
self.loss_fn = loss_fn
|
286 |
+
self.clamp_eps = clamp_eps
|
287 |
+
self.log_weight = log_weight
|
288 |
+
self.mag_weight = mag_weight
|
289 |
+
self.weight = weight
|
290 |
+
self.mel_fmin = mel_fmin
|
291 |
+
self.mel_fmax = mel_fmax
|
292 |
+
self.pow = pow
|
293 |
+
|
294 |
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
295 |
+
"""Computes mel loss between an estimate and a reference
|
296 |
+
signal.
|
297 |
+
|
298 |
+
Parameters
|
299 |
+
----------
|
300 |
+
x : AudioSignal
|
301 |
+
Estimate signal
|
302 |
+
y : AudioSignal
|
303 |
+
Reference signal
|
304 |
+
|
305 |
+
Returns
|
306 |
+
-------
|
307 |
+
torch.Tensor
|
308 |
+
Mel loss.
|
309 |
+
"""
|
310 |
+
loss = 0.0
|
311 |
+
for n_mels, fmin, fmax, s in zip(
|
312 |
+
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
313 |
+
):
|
314 |
+
kwargs = {
|
315 |
+
"window_length": s.window_length,
|
316 |
+
"hop_length": s.hop_length,
|
317 |
+
"window_type": s.window_type,
|
318 |
+
}
|
319 |
+
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
320 |
+
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
321 |
+
|
322 |
+
loss += self.log_weight * self.loss_fn(
|
323 |
+
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
324 |
+
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
325 |
+
)
|
326 |
+
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
|
327 |
+
return loss
|
328 |
+
|
329 |
+
|
330 |
+
class GANLoss(nn.Module):
|
331 |
+
"""
|
332 |
+
Computes a discriminator loss, given a discriminator on
|
333 |
+
generated waveforms/spectrograms compared to ground truth
|
334 |
+
waveforms/spectrograms. Computes the loss for both the
|
335 |
+
discriminator and the generator in separate functions.
|
336 |
+
"""
|
337 |
+
|
338 |
+
def __init__(self, discriminator):
|
339 |
+
super().__init__()
|
340 |
+
self.discriminator = discriminator
|
341 |
+
|
342 |
+
def forward(self, fake, real):
|
343 |
+
d_fake = self.discriminator(fake.audio_data)
|
344 |
+
d_real = self.discriminator(real.audio_data)
|
345 |
+
return d_fake, d_real
|
346 |
+
|
347 |
+
def discriminator_loss(self, fake, real):
|
348 |
+
d_fake, d_real = self.forward(fake.clone().detach(), real)
|
349 |
+
|
350 |
+
loss_d = 0
|
351 |
+
for x_fake, x_real in zip(d_fake, d_real):
|
352 |
+
loss_d += torch.mean(x_fake[-1] ** 2)
|
353 |
+
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
354 |
+
return loss_d
|
355 |
+
|
356 |
+
def generator_loss(self, fake, real):
|
357 |
+
d_fake, d_real = self.forward(fake, real)
|
358 |
+
|
359 |
+
loss_g = 0
|
360 |
+
for x_fake in d_fake:
|
361 |
+
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
362 |
+
|
363 |
+
loss_feature = 0
|
364 |
+
|
365 |
+
for i in range(len(d_fake)):
|
366 |
+
for j in range(len(d_fake[i]) - 1):
|
367 |
+
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
368 |
+
return loss_g, loss_feature
|
vae_modules/stable_vae/models/nn/quantize.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from einops import rearrange
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
|
10 |
+
from .layers import WNConv1d
|
11 |
+
|
12 |
+
|
13 |
+
class VectorQuantize(nn.Module):
|
14 |
+
"""
|
15 |
+
Implementation of VQ similar to Karpathy's repo:
|
16 |
+
https://github.com/karpathy/deep-vector-quantization
|
17 |
+
Additionally uses following tricks from Improved VQGAN
|
18 |
+
(https://arxiv.org/pdf/2110.04627.pdf):
|
19 |
+
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
|
20 |
+
for improved codebook usage
|
21 |
+
2. l2-normalized codes: Converts euclidean distance to cosine similarity which
|
22 |
+
improves training stability
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
|
26 |
+
super().__init__()
|
27 |
+
self.codebook_size = codebook_size
|
28 |
+
self.codebook_dim = codebook_dim
|
29 |
+
|
30 |
+
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
|
31 |
+
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
|
32 |
+
self.codebook = nn.Embedding(codebook_size, codebook_dim)
|
33 |
+
|
34 |
+
def forward(self, z):
|
35 |
+
"""Quantized the input tensor using a fixed codebook and returns
|
36 |
+
the corresponding codebook vectors
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
z : Tensor[B x D x T]
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
Tensor[B x D x T]
|
45 |
+
Quantized continuous representation of input
|
46 |
+
Tensor[1]
|
47 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
48 |
+
entries
|
49 |
+
Tensor[1]
|
50 |
+
Codebook loss to update the codebook
|
51 |
+
Tensor[B x T]
|
52 |
+
Codebook indices (quantized discrete representation of input)
|
53 |
+
Tensor[B x D x T]
|
54 |
+
Projected latents (continuous representation of input before quantization)
|
55 |
+
"""
|
56 |
+
|
57 |
+
# Factorized codes (ViT-VQGAN) Project input into low-dimensional space
|
58 |
+
z_e = self.in_proj(z) # z_e : (B x D x T)
|
59 |
+
z_q, indices = self.decode_latents(z_e)
|
60 |
+
|
61 |
+
commitment_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
|
62 |
+
codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
|
63 |
+
|
64 |
+
z_q = (
|
65 |
+
z_e + (z_q - z_e).detach()
|
66 |
+
) # noop in forward pass, straight-through gradient estimator in backward pass
|
67 |
+
|
68 |
+
z_q = self.out_proj(z_q)
|
69 |
+
|
70 |
+
return z_q, commitment_loss, codebook_loss, indices, z_e
|
71 |
+
|
72 |
+
def embed_code(self, embed_id):
|
73 |
+
return F.embedding(embed_id, self.codebook.weight)
|
74 |
+
|
75 |
+
def decode_code(self, embed_id):
|
76 |
+
return self.embed_code(embed_id).transpose(1, 2)
|
77 |
+
|
78 |
+
def decode_latents(self, latents):
|
79 |
+
encodings = rearrange(latents, "b d t -> (b t) d")
|
80 |
+
codebook = self.codebook.weight # codebook: (N x D)
|
81 |
+
|
82 |
+
# L2 normalize encodings and codebook (ViT-VQGAN)
|
83 |
+
encodings = F.normalize(encodings)
|
84 |
+
codebook = F.normalize(codebook)
|
85 |
+
|
86 |
+
# Compute euclidean distance with codebook
|
87 |
+
dist = (
|
88 |
+
encodings.pow(2).sum(1, keepdim=True)
|
89 |
+
- 2 * encodings @ codebook.t()
|
90 |
+
+ codebook.pow(2).sum(1, keepdim=True).t()
|
91 |
+
)
|
92 |
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
93 |
+
z_q = self.decode_code(indices)
|
94 |
+
return z_q, indices
|
95 |
+
|
96 |
+
|
97 |
+
class ResidualVectorQuantize(nn.Module):
|
98 |
+
"""
|
99 |
+
Introduced in SoundStream: An end2end neural audio codec
|
100 |
+
https://arxiv.org/abs/2107.03312
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
input_dim: int = 512,
|
106 |
+
n_codebooks: int = 9,
|
107 |
+
codebook_size: int = 1024,
|
108 |
+
codebook_dim: Union[int, list] = 8,
|
109 |
+
quantizer_dropout: float = 0.0,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
if isinstance(codebook_dim, int):
|
113 |
+
codebook_dim = [codebook_dim for _ in range(n_codebooks)]
|
114 |
+
|
115 |
+
self.n_codebooks = n_codebooks
|
116 |
+
self.codebook_dim = codebook_dim
|
117 |
+
self.codebook_size = codebook_size
|
118 |
+
|
119 |
+
self.quantizers = nn.ModuleList(
|
120 |
+
[
|
121 |
+
VectorQuantize(input_dim, codebook_size, codebook_dim[i])
|
122 |
+
for i in range(n_codebooks)
|
123 |
+
]
|
124 |
+
)
|
125 |
+
self.quantizer_dropout = quantizer_dropout
|
126 |
+
|
127 |
+
def forward(self, z, n_quantizers: int = None):
|
128 |
+
"""Quantized the input tensor using a fixed set of `n` codebooks and returns
|
129 |
+
the corresponding codebook vectors
|
130 |
+
Parameters
|
131 |
+
----------
|
132 |
+
z : Tensor[B x D x T]
|
133 |
+
n_quantizers : int, optional
|
134 |
+
No. of quantizers to use
|
135 |
+
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
|
136 |
+
Note: if `self.quantizer_dropout` is True, this argument is ignored
|
137 |
+
when in training mode, and a random number of quantizers is used.
|
138 |
+
Returns
|
139 |
+
-------
|
140 |
+
dict
|
141 |
+
A dictionary with the following keys:
|
142 |
+
|
143 |
+
"z" : Tensor[B x D x T]
|
144 |
+
Quantized continuous representation of input
|
145 |
+
"codes" : Tensor[B x N x T]
|
146 |
+
Codebook indices for each codebook
|
147 |
+
(quantized discrete representation of input)
|
148 |
+
"latents" : Tensor[B x N*D x T]
|
149 |
+
Projected latents (continuous representation of input before quantization)
|
150 |
+
"vq/commitment_loss" : Tensor[1]
|
151 |
+
Commitment loss to train encoder to predict vectors closer to codebook
|
152 |
+
entries
|
153 |
+
"vq/codebook_loss" : Tensor[1]
|
154 |
+
Codebook loss to update the codebook
|
155 |
+
"""
|
156 |
+
z_q = 0
|
157 |
+
residual = z
|
158 |
+
commitment_loss = 0
|
159 |
+
codebook_loss = 0
|
160 |
+
|
161 |
+
codebook_indices = []
|
162 |
+
latents = []
|
163 |
+
|
164 |
+
if n_quantizers is None:
|
165 |
+
n_quantizers = self.n_codebooks
|
166 |
+
if self.training:
|
167 |
+
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
|
168 |
+
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
|
169 |
+
n_dropout = int(z.shape[0] * self.quantizer_dropout)
|
170 |
+
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
171 |
+
n_quantizers = n_quantizers.to(z.device)
|
172 |
+
|
173 |
+
for i, quantizer in enumerate(self.quantizers):
|
174 |
+
if self.training is False and i >= n_quantizers:
|
175 |
+
break
|
176 |
+
|
177 |
+
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
|
178 |
+
residual
|
179 |
+
)
|
180 |
+
|
181 |
+
# Create mask to apply quantizer dropout
|
182 |
+
mask = (
|
183 |
+
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
|
184 |
+
)
|
185 |
+
z_q = z_q + z_q_i * mask[:, None, None]
|
186 |
+
residual = residual - z_q_i
|
187 |
+
|
188 |
+
# Sum losses
|
189 |
+
commitment_loss += (commitment_loss_i * mask).mean()
|
190 |
+
codebook_loss += (codebook_loss_i * mask).mean()
|
191 |
+
|
192 |
+
codebook_indices.append(indices_i)
|
193 |
+
latents.append(z_e_i)
|
194 |
+
|
195 |
+
codes = torch.stack(codebook_indices, dim=1)
|
196 |
+
latents = torch.cat(latents, dim=1)
|
197 |
+
|
198 |
+
return z_q, codes, latents, commitment_loss, codebook_loss
|
199 |
+
|
200 |
+
def from_codes(self, codes: torch.Tensor):
|
201 |
+
"""Given the quantized codes, reconstruct the continuous representation
|
202 |
+
Parameters
|
203 |
+
----------
|
204 |
+
codes : Tensor[B x N x T]
|
205 |
+
Quantized discrete representation of input
|
206 |
+
Returns
|
207 |
+
-------
|
208 |
+
Tensor[B x D x T]
|
209 |
+
Quantized continuous representation of input
|
210 |
+
"""
|
211 |
+
z_q = 0.0
|
212 |
+
z_p = []
|
213 |
+
n_codebooks = codes.shape[1]
|
214 |
+
for i in range(n_codebooks):
|
215 |
+
z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
|
216 |
+
z_p.append(z_p_i)
|
217 |
+
|
218 |
+
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
219 |
+
z_q = z_q + z_q_i
|
220 |
+
return z_q, torch.cat(z_p, dim=1), codes
|
221 |
+
|
222 |
+
def from_latents(self, latents: torch.Tensor):
|
223 |
+
"""Given the unquantized latents, reconstruct the
|
224 |
+
continuous representation after quantization.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
latents : Tensor[B x N x T]
|
229 |
+
Continuous representation of input after projection
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
Tensor[B x D x T]
|
234 |
+
Quantized representation of full-projected space
|
235 |
+
Tensor[B x D x T]
|
236 |
+
Quantized representation of latent space
|
237 |
+
"""
|
238 |
+
z_q = 0
|
239 |
+
z_p = []
|
240 |
+
codes = []
|
241 |
+
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
|
242 |
+
|
243 |
+
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
|
244 |
+
0
|
245 |
+
]
|
246 |
+
for i in range(n_codebooks):
|
247 |
+
j, k = dims[i], dims[i + 1]
|
248 |
+
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
|
249 |
+
z_p.append(z_p_i)
|
250 |
+
codes.append(codes_i)
|
251 |
+
|
252 |
+
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
253 |
+
z_q = z_q + z_q_i
|
254 |
+
|
255 |
+
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
rvq = ResidualVectorQuantize(quantizer_dropout=True)
|
260 |
+
x = torch.randn(16, 512, 80)
|
261 |
+
y = rvq(x)
|
262 |
+
print(y["latents"].shape)
|
vae_modules/stable_vae/models/pretransforms.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from einops import rearrange
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class Pretransform(nn.Module):
|
6 |
+
def __init__(self, enable_grad, io_channels, is_discrete):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.is_discrete = is_discrete
|
10 |
+
self.io_channels = io_channels
|
11 |
+
self.encoded_channels = None
|
12 |
+
self.downsampling_ratio = None
|
13 |
+
|
14 |
+
self.enable_grad = enable_grad
|
15 |
+
|
16 |
+
def encode(self, x):
|
17 |
+
raise NotImplementedError
|
18 |
+
|
19 |
+
def decode(self, z):
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
def tokenize(self, x):
|
23 |
+
raise NotImplementedError
|
24 |
+
|
25 |
+
def decode_tokens(self, tokens):
|
26 |
+
raise NotImplementedError
|
27 |
+
|
28 |
+
class AutoencoderPretransform(Pretransform):
|
29 |
+
def __init__(self, model, scale=1.0, model_half=False, iterate_batch=False, chunked=False):
|
30 |
+
super().__init__(enable_grad=False, io_channels=model.io_channels, is_discrete=model.bottleneck is not None and model.bottleneck.is_discrete)
|
31 |
+
self.model = model
|
32 |
+
self.model.requires_grad_(False).eval()
|
33 |
+
self.scale=scale
|
34 |
+
self.downsampling_ratio = model.downsampling_ratio
|
35 |
+
self.io_channels = model.io_channels
|
36 |
+
self.sample_rate = model.sample_rate
|
37 |
+
|
38 |
+
self.model_half = model_half
|
39 |
+
self.iterate_batch = iterate_batch
|
40 |
+
|
41 |
+
self.encoded_channels = model.latent_dim
|
42 |
+
|
43 |
+
self.chunked = chunked
|
44 |
+
self.num_quantizers = model.bottleneck.num_quantizers if model.bottleneck is not None and model.bottleneck.is_discrete else None
|
45 |
+
self.codebook_size = model.bottleneck.codebook_size if model.bottleneck is not None and model.bottleneck.is_discrete else None
|
46 |
+
|
47 |
+
if self.model_half:
|
48 |
+
self.model.half()
|
49 |
+
|
50 |
+
def encode(self, x, **kwargs):
|
51 |
+
|
52 |
+
if self.model_half:
|
53 |
+
x = x.half()
|
54 |
+
self.model.to(torch.float16)
|
55 |
+
|
56 |
+
encoded = self.model.encode_audio(x, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
|
57 |
+
|
58 |
+
if self.model_half:
|
59 |
+
encoded = encoded.float()
|
60 |
+
|
61 |
+
return encoded / self.scale
|
62 |
+
|
63 |
+
def decode(self, z, **kwargs):
|
64 |
+
z = z * self.scale
|
65 |
+
|
66 |
+
if self.model_half:
|
67 |
+
z = z.half()
|
68 |
+
self.model.to(torch.float16)
|
69 |
+
|
70 |
+
decoded = self.model.decode_audio(z, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
|
71 |
+
|
72 |
+
if self.model_half:
|
73 |
+
decoded = decoded.float()
|
74 |
+
|
75 |
+
return decoded
|
76 |
+
|
77 |
+
def tokenize(self, x, **kwargs):
|
78 |
+
assert self.model.is_discrete, "Cannot tokenize with a continuous model"
|
79 |
+
|
80 |
+
_, info = self.model.encode(x, return_info = True, **kwargs)
|
81 |
+
|
82 |
+
return info[self.model.bottleneck.tokens_id]
|
83 |
+
|
84 |
+
def decode_tokens(self, tokens, **kwargs):
|
85 |
+
assert self.model.is_discrete, "Cannot decode tokens with a continuous model"
|
86 |
+
|
87 |
+
return self.model.decode_tokens(tokens, **kwargs)
|
88 |
+
|
89 |
+
def load_state_dict(self, state_dict, strict=True):
|
90 |
+
self.model.load_state_dict(state_dict, strict=strict)
|
91 |
+
|
92 |
+
class WaveletPretransform(Pretransform):
|
93 |
+
def __init__(self, channels, levels, wavelet):
|
94 |
+
super().__init__(enable_grad=False, io_channels=channels, is_discrete=False)
|
95 |
+
|
96 |
+
from .wavelets import WaveletEncode1d, WaveletDecode1d
|
97 |
+
|
98 |
+
self.encoder = WaveletEncode1d(channels, levels, wavelet)
|
99 |
+
self.decoder = WaveletDecode1d(channels, levels, wavelet)
|
100 |
+
|
101 |
+
self.downsampling_ratio = 2 ** levels
|
102 |
+
self.io_channels = channels
|
103 |
+
self.encoded_channels = channels * self.downsampling_ratio
|
104 |
+
|
105 |
+
def encode(self, x):
|
106 |
+
return self.encoder(x)
|
107 |
+
|
108 |
+
def decode(self, z):
|
109 |
+
return self.decoder(z)
|
110 |
+
|
111 |
+
class PQMFPretransform(Pretransform):
|
112 |
+
def __init__(self, attenuation=100, num_bands=16):
|
113 |
+
# TODO: Fix PQMF to take in in-channels
|
114 |
+
super().__init__(enable_grad=False, io_channels=1, is_discrete=False)
|
115 |
+
from .pqmf import PQMF
|
116 |
+
self.pqmf = PQMF(attenuation, num_bands)
|
117 |
+
|
118 |
+
|
119 |
+
def encode(self, x):
|
120 |
+
# x is (Batch x Channels x Time)
|
121 |
+
x = self.pqmf.forward(x)
|
122 |
+
# pqmf.forward returns (Batch x Channels x Bands x Time)
|
123 |
+
# but Pretransform needs Batch x Channels x Time
|
124 |
+
# so concatenate channels and bands into one axis
|
125 |
+
return rearrange(x, "b c n t -> b (c n) t")
|
126 |
+
|
127 |
+
def decode(self, x):
|
128 |
+
# x is (Batch x (Channels Bands) x Time), convert back to (Batch x Channels x Bands x Time)
|
129 |
+
x = rearrange(x, "b (c n) t -> b c n t", n=self.pqmf.num_bands)
|
130 |
+
# returns (Batch x Channels x Time)
|
131 |
+
return self.pqmf.inverse(x)
|
132 |
+
|
133 |
+
class PretrainedDACPretransform(Pretransform):
|
134 |
+
def __init__(self, model_type="44khz", model_bitrate="8kbps", scale=1.0, quantize_on_decode: bool = True, chunked=True):
|
135 |
+
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
|
136 |
+
|
137 |
+
import dac
|
138 |
+
|
139 |
+
model_path = dac.utils.download(model_type=model_type, model_bitrate=model_bitrate)
|
140 |
+
|
141 |
+
self.model = dac.DAC.load(model_path)
|
142 |
+
|
143 |
+
self.quantize_on_decode = quantize_on_decode
|
144 |
+
|
145 |
+
if model_type == "44khz":
|
146 |
+
self.downsampling_ratio = 512
|
147 |
+
else:
|
148 |
+
self.downsampling_ratio = 320
|
149 |
+
|
150 |
+
self.io_channels = 1
|
151 |
+
|
152 |
+
self.scale = scale
|
153 |
+
|
154 |
+
self.chunked = chunked
|
155 |
+
|
156 |
+
self.encoded_channels = self.model.latent_dim
|
157 |
+
|
158 |
+
self.num_quantizers = self.model.n_codebooks
|
159 |
+
|
160 |
+
self.codebook_size = self.model.codebook_size
|
161 |
+
|
162 |
+
def encode(self, x):
|
163 |
+
|
164 |
+
latents = self.model.encoder(x)
|
165 |
+
|
166 |
+
if self.quantize_on_decode:
|
167 |
+
output = latents
|
168 |
+
else:
|
169 |
+
z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
|
170 |
+
output = z
|
171 |
+
|
172 |
+
if self.scale != 1.0:
|
173 |
+
output = output / self.scale
|
174 |
+
|
175 |
+
return output
|
176 |
+
|
177 |
+
def decode(self, z):
|
178 |
+
|
179 |
+
if self.scale != 1.0:
|
180 |
+
z = z * self.scale
|
181 |
+
|
182 |
+
if self.quantize_on_decode:
|
183 |
+
z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
|
184 |
+
|
185 |
+
return self.model.decode(z)
|
186 |
+
|
187 |
+
def tokenize(self, x):
|
188 |
+
return self.model.encode(x)[1]
|
189 |
+
|
190 |
+
def decode_tokens(self, tokens):
|
191 |
+
latents = self.model.quantizer.from_codes(tokens)
|
192 |
+
return self.model.decode(latents)
|
193 |
+
|
194 |
+
class AudiocraftCompressionPretransform(Pretransform):
|
195 |
+
def __init__(self, model_type="facebook/encodec_32khz", scale=1.0, quantize_on_decode: bool = True):
|
196 |
+
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
|
197 |
+
|
198 |
+
try:
|
199 |
+
from audiocraft.models import CompressionModel
|
200 |
+
except ImportError:
|
201 |
+
raise ImportError("Audiocraft is not installed. Please install audiocraft to use Audiocraft models.")
|
202 |
+
|
203 |
+
self.model = CompressionModel.get_pretrained(model_type)
|
204 |
+
|
205 |
+
self.quantize_on_decode = quantize_on_decode
|
206 |
+
|
207 |
+
self.downsampling_ratio = round(self.model.sample_rate / self.model.frame_rate)
|
208 |
+
|
209 |
+
self.sample_rate = self.model.sample_rate
|
210 |
+
|
211 |
+
self.io_channels = self.model.channels
|
212 |
+
|
213 |
+
self.scale = scale
|
214 |
+
|
215 |
+
#self.encoded_channels = self.model.latent_dim
|
216 |
+
|
217 |
+
self.num_quantizers = self.model.num_codebooks
|
218 |
+
|
219 |
+
self.codebook_size = self.model.cardinality
|
220 |
+
|
221 |
+
self.model.to(torch.float16).eval().requires_grad_(False)
|
222 |
+
|
223 |
+
def encode(self, x):
|
224 |
+
|
225 |
+
assert False, "Audiocraft compression models do not support continuous encoding"
|
226 |
+
|
227 |
+
# latents = self.model.encoder(x)
|
228 |
+
|
229 |
+
# if self.quantize_on_decode:
|
230 |
+
# output = latents
|
231 |
+
# else:
|
232 |
+
# z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
|
233 |
+
# output = z
|
234 |
+
|
235 |
+
# if self.scale != 1.0:
|
236 |
+
# output = output / self.scale
|
237 |
+
|
238 |
+
# return output
|
239 |
+
|
240 |
+
def decode(self, z):
|
241 |
+
|
242 |
+
assert False, "Audiocraft compression models do not support continuous decoding"
|
243 |
+
|
244 |
+
# if self.scale != 1.0:
|
245 |
+
# z = z * self.scale
|
246 |
+
|
247 |
+
# if self.quantize_on_decode:
|
248 |
+
# z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
|
249 |
+
|
250 |
+
# return self.model.decode(z)
|
251 |
+
|
252 |
+
def tokenize(self, x):
|
253 |
+
with torch.cuda.amp.autocast(enabled=False):
|
254 |
+
return self.model.encode(x.to(torch.float16))[0]
|
255 |
+
|
256 |
+
def decode_tokens(self, tokens):
|
257 |
+
with torch.cuda.amp.autocast(enabled=False):
|
258 |
+
return self.model.decode(tokens)
|
vae_modules/stable_vae/models/utils.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchaudio import transforms as T
|
4 |
+
|
5 |
+
|
6 |
+
class PadCrop(nn.Module):
|
7 |
+
def __init__(self, n_samples, randomize=True):
|
8 |
+
super().__init__()
|
9 |
+
self.n_samples = n_samples
|
10 |
+
self.randomize = randomize
|
11 |
+
|
12 |
+
def __call__(self, signal):
|
13 |
+
n, s = signal.shape
|
14 |
+
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
|
15 |
+
end = start + self.n_samples
|
16 |
+
output = signal.new_zeros([n, self.n_samples])
|
17 |
+
output[:, :min(s, self.n_samples)] = signal[:, start:end]
|
18 |
+
return output
|
19 |
+
|
20 |
+
|
21 |
+
def set_audio_channels(audio, target_channels):
|
22 |
+
if target_channels == 1:
|
23 |
+
# Convert to mono
|
24 |
+
audio = audio.mean(1, keepdim=True)
|
25 |
+
elif target_channels == 2:
|
26 |
+
# Convert to stereo
|
27 |
+
if audio.shape[1] == 1:
|
28 |
+
audio = audio.repeat(1, 2, 1)
|
29 |
+
elif audio.shape[1] > 2:
|
30 |
+
audio = audio[:, :2, :]
|
31 |
+
return audio
|
32 |
+
|
33 |
+
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device):
|
34 |
+
|
35 |
+
audio = audio.to(device)
|
36 |
+
|
37 |
+
if in_sr != target_sr:
|
38 |
+
resample_tf = T.Resample(in_sr, target_sr).to(device)
|
39 |
+
audio = resample_tf(audio)
|
40 |
+
|
41 |
+
audio = PadCrop(target_length, randomize=False)(audio)
|
42 |
+
|
43 |
+
# Add batch dimension
|
44 |
+
if audio.dim() == 1:
|
45 |
+
audio = audio.unsqueeze(0).unsqueeze(0)
|
46 |
+
elif audio.dim() == 2:
|
47 |
+
audio = audio.unsqueeze(0)
|
48 |
+
|
49 |
+
audio = set_audio_channels(audio, target_channels)
|
50 |
+
|
51 |
+
return audio
|