Spaces:
Running
Running
Add application
Browse files
app.py
CHANGED
@@ -13,6 +13,10 @@ from sklearn.feature_extraction.text import TfidfVectorizer
|
|
13 |
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
from keybert import KeyBERT
|
15 |
import torch
|
|
|
|
|
|
|
|
|
16 |
# Buraya İngilizce modelinizi yazın
|
17 |
model = AutoModelForSequenceClassification.from_pretrained("OsBaran/Roberta-Classification-Model")
|
18 |
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
@@ -140,71 +144,100 @@ def sbert_similarity(input_text, bbc_articles):
|
|
140 |
# En yüksek benzerlik skoru ve karşılık gelen haber
|
141 |
max_score, most_similar_news = cosine_scores.max(), bbc_articles[cosine_scores.argmax().item()]
|
142 |
print(f"En benzer haber skoru: {max_score:.2f}")
|
|
|
|
|
|
|
|
|
143 |
# Türkçe modelini yükle
|
144 |
-
model_tr_name = "dbmdz/bert-base-turkish-cased" # Buraya Türkçe modelinizi yazın
|
145 |
-
model_tr = AutoModelForSequenceClassification.from_pretrained(model_tr_name)
|
146 |
-
tokenizer_tr = AutoTokenizer.from_pretrained(model_tr_name)
|
147 |
-
classifier_tr = pipeline("sentiment-analysis", model=model_tr, tokenizer=tokenizer_tr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
#
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
"bbc news",
|
158 |
"cnn",
|
159 |
"reuters.com",
|
160 |
"theguardian.com",
|
161 |
"time",
|
162 |
# Diğer güvenilir kaynaklar...
|
163 |
-
|
164 |
|
165 |
-
|
166 |
# # Sonuçları yazdır
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
else:
|
183 |
-
# Benzerlik bulunmazsa tahmin algoritmasını kullanın ve açıklama sağlayın
|
184 |
-
prediction = predict_with_roberta(model, tokenizer, input_news)
|
185 |
-
explanation = explain_roberta_prediction(model, tokenizer, input_news)
|
186 |
-
# Tahmin sonucunu yazdır
|
187 |
-
# result = "Doğru" if prediction == 1 else "Yanlış"
|
188 |
-
# print(f"Haberin durumu: {result}")
|
189 |
-
print(explanation)
|
190 |
-
return {explanation}
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
else:
|
197 |
-
|
198 |
prediction = predict_with_roberta(model, tokenizer, input_news)
|
199 |
explanation = explain_roberta_prediction(model, tokenizer, input_news)
|
200 |
# Tahmin sonucunu yazdır
|
201 |
-
result = "Doğru" if prediction == 1 else "Yanlış"
|
202 |
-
print(f"Haberin durumu: {result}")
|
203 |
-
print("Haberin açıklaması:")
|
204 |
print(explanation)
|
205 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
elif language == "tr":
|
207 |
-
|
|
|
|
|
|
|
|
|
208 |
else:
|
209 |
result = {"error": "Unsupported language"}
|
210 |
# return result
|
|
|
13 |
from sklearn.metrics.pairwise import cosine_similarity
|
14 |
from keybert import KeyBERT
|
15 |
import torch
|
16 |
+
from deep_translator import DeeplTranslator
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
api_key = "69f73328-5f95-4eda-813a-16af8c688404:fx"
|
20 |
# Buraya İngilizce modelinizi yazın
|
21 |
model = AutoModelForSequenceClassification.from_pretrained("OsBaran/Roberta-Classification-Model")
|
22 |
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
|
|
144 |
# En yüksek benzerlik skoru ve karşılık gelen haber
|
145 |
max_score, most_similar_news = cosine_scores.max(), bbc_articles[cosine_scores.argmax().item()]
|
146 |
print(f"En benzer haber skoru: {max_score:.2f}")
|
147 |
+
|
148 |
+
def translate_text(text, source_lang='tr', target_lang='en'):
|
149 |
+
translated = DeeplTranslator(api_key=api_key, source=source_lang, target=target_lang).translate(text)
|
150 |
+
return translated
|
151 |
# Türkçe modelini yükle
|
152 |
+
# model_tr_name = "dbmdz/bert-base-turkish-cased" # Buraya Türkçe modelinizi yazın
|
153 |
+
# model_tr = AutoModelForSequenceClassification.from_pretrained(model_tr_name)
|
154 |
+
# tokenizer_tr = AutoTokenizer.from_pretrained(model_tr_name)
|
155 |
+
# classifier_tr = pipeline("sentiment-analysis", model=model_tr, tokenizer=tokenizer_tr)
|
156 |
+
|
157 |
+
tokenizer_tr = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased")
|
158 |
+
model_tr = AutoModelForSequenceClassification.from_pretrained("OsBaran/Bert-Classification-Model-Tr-3", num_labels=2)
|
159 |
+
def trModelPredictAlgo(input_news):
|
160 |
+
inputs = tokenizer(input_news, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
161 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
162 |
+
|
163 |
+
# Modelin tahmin yapması
|
164 |
+
with torch.no_grad():
|
165 |
+
outputs = model(**inputs)
|
166 |
+
logits = outputs.logits
|
167 |
|
168 |
+
# Softmax uygulama (olasılık hesaplama)
|
169 |
+
probabilities = F.softmax(logits, dim=-1)
|
170 |
+
|
171 |
+
# En yüksek olasılığı ve sınıfı bulma
|
172 |
+
predicted_class = torch.argmax(probabilities, dim=-1)
|
173 |
+
predicted_probability = probabilities[0, predicted_class].item()
|
174 |
+
|
175 |
+
# Sonucu yazdırma
|
176 |
+
print(f"Predicted class: {predicted_class.item()}")
|
177 |
+
print(f"Prediction probability: {predicted_probability * 100:.2f}%")
|
178 |
+
return f"Predicted class: {predicted_class.item()}" + f"Prediction probability: {predicted_probability * 100:.2f}%"
|
179 |
+
def enModelPredictAlgo(input_news):
|
180 |
+
keywords = extract_keywords_keybert(input_news)
|
181 |
+
search_query = ' '.join(keywords)
|
182 |
+
news_articles = fetch_news_from_api(api_key, search_query)
|
183 |
|
184 |
+
trusted_sources = [
|
185 |
"bbc news",
|
186 |
"cnn",
|
187 |
"reuters.com",
|
188 |
"theguardian.com",
|
189 |
"time",
|
190 |
# Diğer güvenilir kaynaklar...
|
191 |
+
]
|
192 |
|
193 |
+
trusted_articles = filter_trusted_sources(news_articles, trusted_sources)
|
194 |
# # Sonuçları yazdır
|
195 |
+
trusted_articles_urls = []
|
196 |
+
for i in trusted_articles:
|
197 |
+
trusted_articles_urls.append(i["url"])
|
198 |
+
|
199 |
+
if trusted_articles:
|
200 |
+
print(f"\nGüvenilir kaynaklardan bulunan haberler:\n")
|
201 |
+
print(trusted_articles_urls)
|
202 |
+
bbc_articles = [fetch_news_content(link) for link in trusted_articles_urls]
|
203 |
+
similarities = compare_with_thrusted(input_news, bbc_articles)
|
204 |
+
sbert_similarity(input_news, bbc_articles)
|
205 |
+
print(similarities)
|
206 |
+
max_similarity = max(similarities)
|
207 |
+
threshold = 0.8
|
208 |
+
if max_similarity > threshold:
|
209 |
+
print(f"Sonuç: Doğru (Benzerlik: {max_similarity:.2f})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
else:
|
211 |
+
# Benzerlik bulunmazsa tahmin algoritmasını kullanın ve açıklama sağlayın
|
212 |
prediction = predict_with_roberta(model, tokenizer, input_news)
|
213 |
explanation = explain_roberta_prediction(model, tokenizer, input_news)
|
214 |
# Tahmin sonucunu yazdır
|
215 |
+
# result = "Doğru" if prediction == 1 else "Yanlış"
|
216 |
+
# print(f"Haberin durumu: {result}")
|
|
|
217 |
print(explanation)
|
218 |
+
return explanation
|
219 |
+
|
220 |
+
else:
|
221 |
+
print("Güvenilir kaynaklardan hiç haber bulunamadı.")
|
222 |
+
prediction = predict_with_roberta(model, tokenizer, input_news)
|
223 |
+
explanation = explain_roberta_prediction(model, tokenizer, input_news)
|
224 |
+
# Tahmin sonucunu yazdır
|
225 |
+
result = "Doğru" if prediction == 1 else "Yanlış"
|
226 |
+
print(f"Haberin durumu: {result}")
|
227 |
+
print("Haberin açıklaması:")
|
228 |
+
print(explanation)
|
229 |
+
return explanation
|
230 |
+
# Gradio ile API oluştur
|
231 |
+
def predict(input_news, language):
|
232 |
+
if language == "en":
|
233 |
+
result = enModelPredictAlgo(input_news=input_news)
|
234 |
+
return {"Sonuç": result}
|
235 |
elif language == "tr":
|
236 |
+
input_news_en= translate_text(input_news)
|
237 |
+
result1 = enModelPredictAlgo(input_news_en)
|
238 |
+
|
239 |
+
result2= trModelPredictAlgo(input_news=input_news)
|
240 |
+
return {"İngilizce Model Sonucu": result1, "Türkçe Model Sonucu": result2}
|
241 |
else:
|
242 |
result = {"error": "Unsupported language"}
|
243 |
# return result
|