Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
# Load the text classification pipeline from Hugging Face | |
classifier = pipeline("text-classification", model="./clickbait-classifier-model-90", tokenizer=tokenizer) | |
def classify_text(text): | |
prediction = classifier(text)[0] | |
clickbait_label = "LABEL_1" # Assuming LABEL_1 corresponds to clickbait | |
non_clickbait_label = "LABEL_0" # Assuming LABEL_0 corresponds to non-clickbait | |
predicted_label = prediction["label"] | |
predicted_score = prediction["score"] * 100 | |
clickbait_score = predicted_score if predicted_label == clickbait_label else 0 | |
non_clickbait_score = predicted_score if predicted_label == non_clickbait_label else 0 | |
return clickbait_score, non_clickbait_score | |
# Example clickbait headline | |
clickbait_example = ["You'll Never Believe What This Dog Did Next!"] | |
# Example non-clickbait headline | |
non_clickbait_example = ["Local School Board Approves New Budget"] | |
# Combine into a list of examples | |
examples = [clickbait_example, non_clickbait_example] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=classify_text, | |
inputs=[gr.Textbox(lines=2, placeholder="Enter a text headline...")], | |
outputs=[ | |
gr.Slider(label="Clickbait", minimum=0, maximum=100, step=1), | |
gr.Slider(label="Non-Clickbait", minimum=0, maximum=100, step=1), | |
], | |
title="Clickbait Detector", | |
examples=examples, | |
) | |
# Launch the interface | |
iface.launch() | |