Spaces:
Runtime error
Runtime error
File size: 4,673 Bytes
302bb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import os
import numpy as np
import torch
from models.network_swinir import SwinIR
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device: %s" % device)
default_models = {
"sr": "weights/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth",
"denoise": "weights/005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth"
}
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
denoise_model = SwinIR(upscale=1, in_chans=3, img_size=128, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='', resi_connection='1conv').to(device)
param_key_g = 'params'
try:
pretrained_model = torch.load(default_models["denoise"])
denoise_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
except: print("Loading model failed")
denoise_model.eval()
sr_model = SwinIR(upscale=4, in_chans=3, img_size=64, window_size=8,
img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv').to(device)
param_key_g = 'params_ema'
try:
pretrained_model = torch.load(default_models["sr"])
sr_model.load_state_dict(pretrained_model[param_key_g] if param_key_g in pretrained_model.keys() else pretrained_model, strict=True)
except: print("Loading model failed")
sr_model.eval()
def sr(input_img):
window_size = 8
# read image
img_lq = input_img.astype(np.float32) / 255.
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
output = sr_model(img_lq)
output = output[..., :h_old * 4, :w_old * 4]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return output
def denoise(input_img):
window_size = 8
# read image
img_lq = input_img.astype(np.float32) / 255.
img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB
img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad]
output = denoise_model(img_lq)
output = output[..., :h_old * 4, :w_old * 4]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return output
title = " AISeed AI Application Demo "
description = "# A Demo of Deep Learning for Image Restoration"
example_list = [["examples/" + example] for example in os.listdir("examples")]
with gr.Blocks() as demo:
demo.title = title
gr.Markdown(description)
with gr.Row():
with gr.Column():
im = gr.Image(label="Input Image")
im_2 = gr.Image(label="Enhanced Image")
with gr.Column():
btn1 = gr.Button(value="Enhance Resolution")
btn1.click(sr, inputs=[im], outputs=[im_2])
btn2 = gr.Button(value="Denoise")
btn2.click(denoise, inputs=[im], outputs=[im_2])
gr.Examples(examples=example_list,
inputs=[im],
outputs=[im_2])
if __name__ == "__main__":
demo.launch() |