File size: 8,224 Bytes
35e0c07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import streamlit as st
import requests
import folium
from streamlit_folium import st_folium
import pandas as pd
import plotly.graph_objs as go
import branca.colormap as cm

# Set page layout to wide
st.set_page_config(layout="wide", page_title="Real-Time Wind Data Dashboard")

# Function to fetch GeoJSON data
@st.cache_data(ttl=300)
def fetch_geojson_data(url):
    response = requests.get(url)
    return response.json()

# Function to calculate wind statistics
def calculate_wind_stats(features):
    gust_speeds = [feature['properties']['10-Minute Maximum Gust(km/hour)'] for feature in features if
                   feature['properties']['10-Minute Maximum Gust(km/hour)'] is not None]
    mean_speeds = [feature['properties']['10-Minute Mean Speed(km/hour)'] for feature in features if
                   feature['properties']['10-Minute Mean Speed(km/hour)'] is not None]

    if not gust_speeds:
        return None, None, None, None
    avg_gust = sum(gust_speeds) / len(gust_speeds)
    min_gust = min(gust_speeds)
    max_gust = max(gust_speeds)
    avg_mean_speed = sum(mean_speeds) / len(mean_speeds) if mean_speeds else None
    return avg_gust, min_gust, max_gust, avg_mean_speed

# Function to convert wind direction to degrees
def mean_wind_direction_to_degrees(direction):
    directions = {
        'North': 0, 'Northeast': 45, 'East': 90, 'Southeast': 135,
        'South': 180, 'Southwest': 225, 'West': 270, 'Northwest': 315
    }
    return directions.get(direction, 0)

# Fetch GeoJSON data
url = 'https://csdi.vercel.app/weather/wind'
geo_data = fetch_geojson_data(url)

# Calculate wind statistics
avg_gust, min_gust, max_gust, avg_mean_speed = calculate_wind_stats(geo_data['features'])

# Create a map centered on a specific location
map_center = [22.35473034278638, 114.14827142452518]  # Coordinates of Hong Kong
my_map = folium.Map(location=map_center, zoom_start=10.35, tiles='CartoDB positron')

# Create a colormap for wind speed with limited width
colormap = cm.LinearColormap(colors=['#000000', '#0066eb', '#ff3d77', '#eb0000'],
                             vmin=0, vmax=30)
my_map.add_child(colormap)

# Function to calculate arrow size based on wind speed
def get_arrow_size(speed):
    if speed is None:
        return 20
    return max(20, min(50, speed * 2))

# Add the GeoJSON data to the map with arrow markers
for feature in geo_data['features']:
    coordinates = feature['geometry']['coordinates']
    mean_wind_direction = feature['properties']['10-Minute Mean Wind Direction(Compass points)']
    mean_speed = feature['properties']['10-Minute Mean Speed(km/hour)']

    # Skip plotting if wind direction is null
    if mean_wind_direction is None:
        continue

    # Calculate rotation angle for wind direction
    rotation_angle = mean_wind_direction_to_degrees(mean_wind_direction)

    # Calculate arrow size based on wind speed
    arrow_size = get_arrow_size(mean_speed)

    # Determine color based on wind speed
    color = colormap(mean_speed) if mean_speed is not None else 'gray'

    # Create an arrow marker for wind direction
    folium.Marker(
        location=[coordinates[1], coordinates[0]],
        icon=folium.DivIcon(html=f"""
            <div style="
                width: {arrow_size}px; height: {arrow_size}px;
                display: flex; align-items: center; justify-content: center;
                transform: rotate({rotation_angle}deg);
                ">
                <svg width="{arrow_size}" height="{arrow_size}" viewBox="0 0 24 24" fill="none" stroke="{color}" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
                    <line x1="12" y1="5" x2="12" y2="19"></line>
                    <polyline points="5 12 12 5 19 12"></polyline>
                </svg>
            </div>
        """),
        popup=folium.Popup(f"""
            <b>{feature['properties']['Automatic Weather Station']}</b><br>
            Direction: {mean_wind_direction}<br>
            Speed: {mean_speed} km/h<br>
            Max Gust: {feature['properties']['10-Minute Maximum Gust(km/hour)']} km/h
        """, max_width=300)
    ).add_to(my_map)

col1, col2, col3 = st.columns([1.65, 2, 1.15])

with col1:
    if geo_data['features']:
        wind_directions = [feature['properties']['10-Minute Mean Wind Direction(Compass points)'] for feature in
                           geo_data['features']]
        direction_counts = {d: wind_directions.count(d) for d in
                            ['North', 'Northeast', 'East', 'Southeast', 'South', 'Southwest', 'West', 'Northwest']}

        # Prepare wind speeds for each direction
        direction_speeds = {d: [] for d in
                            ['North', 'Northeast', 'East', 'Southeast', 'South', 'Southwest', 'West', 'Northwest']}
        for feature in geo_data['features']:
            direction = feature['properties']['10-Minute Mean Wind Direction(Compass points)']
            speed = feature['properties']['10-Minute Mean Speed(km/hour)']
            if direction in direction_speeds and speed is not None:
                direction_speeds[direction].append(speed)

        # Calculate average wind speed for each direction
        average_speeds = {d: sum(speeds) / len(speeds) if speeds else 0 for d, speeds in direction_speeds.items()}

        # Plot wind direction rose with average wind speed
        fig = go.Figure()

        # Add polar bar for wind direction
        fig.add_trace(go.Barpolar(
            r=[direction_counts[d] for d in direction_counts.keys()],
            theta=list(direction_counts.keys()),
            name='Wind Direction Count',
            marker_color='#0008ff',
            opacity=0.5
        ))

        # Add radial bar for average wind speed
        fig.add_trace(go.Barpolar(
            r=list(average_speeds.values()),
            theta=list(average_speeds.keys()),
            name='Average Wind Speed',
            marker_color='#ff0019',  # Orange color for wind speed
            opacity=0.5,
            thetaunit='radians',  # Ensures radial bars are correctly positioned
            base=0  # Base of the radial bars starts from 0
        ))

        fig.update_layout(
            polar=dict(
                radialaxis=dict(
                    visible=False,
                    range=[0, max(direction_counts.values())]
                ),
                angularaxis=dict(
                    tickvals=list(direction_counts.keys()),
                    ticktext=['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW'],
                    rotation=90,  # Rotate to make North the top
                    direction='clockwise'
                )
            ),
            width=500,
            height=380,
            title={'text': 'Wind Direction and Average Speed Rose Plot', 'font': {'size': 18}},
            legend={'x': 0.8, 'y': 0.95}
        )

        st.plotly_chart(fig, use_container_width=True)

    if avg_gust is not None:
        col1a, col1b = st.columns(2)
        with col1a:
            st.metric(label="Avg Max Gust (km/h)", value=f"{avg_gust:.2f}")
            st.metric(label="Min Max Gust (km/h)", value=f"{min_gust}")
        with col1b:
            st.metric(label="Max Max Gust (km/h)", value=f"{max_gust}")
            if avg_mean_speed is not None:
                st.metric(label="Avg Mean Speed (km/h)", value=f"{avg_mean_speed:.2f}")
    else:
        st.write("No valid wind data available to calculate statistics.")

    gust_speeds = [feature['properties']['10-Minute Maximum Gust(km/hour)'] for feature in geo_data['features'] if
                   feature['properties']['10-Minute Maximum Gust(km/hour)'] is not None]


with col3:
    table_data = [{
        'Weather Station': feature['properties']['Automatic Weather Station'],
        'Mean Wind Direction': feature['properties']['10-Minute Mean Wind Direction(Compass points)'],
        'Mean Speed(km/hour)': feature['properties']['10-Minute Mean Speed(km/hour)'],
        'Maximum Gust(km/hour)': feature['properties']['10-Minute Maximum Gust(km/hour)']
    } for feature in geo_data['features']]

    st.dataframe(pd.DataFrame(table_data), height=600)

with col2:
    # Display map
    st_folium(my_map, width=500, height=600)