File size: 7,322 Bytes
eb136bc
 
 
6044374
eb136bc
 
 
 
99daaed
eb136bc
 
99daaed
 
eb136bc
99daaed
 
 
 
ddf8478
 
99daaed
 
 
 
 
ddf8478
 
99daaed
 
 
ddf8478
 
99daaed
 
 
 
eb136bc
99daaed
ddf8478
6044374
99daaed
ddf8478
6044374
99daaed
 
6044374
99daaed
6044374
99daaed
6044374
99daaed
6044374
99daaed
6044374
99daaed
 
6044374
99daaed
6044374
99daaed
6044374
99daaed
 
eb136bc
99daaed
 
 
eb136bc
 
99daaed
 
eb136bc
99daaed
 
eb136bc
99daaed
9b14109
99daaed
c00de41
99daaed
ddf8478
c00de41
99daaed
ddf8478
eb136bc
99daaed
 
eb136bc
99daaed
eb136bc
99daaed
 
eb136bc
99daaed
eb136bc
99daaed
c00de41
99daaed
 
c00de41
99daaed
ddf8478
c00de41
99daaed
ddf8478
c00de41
99daaed
 
c00de41
99daaed
c00de41
99daaed
 
c00de41
99daaed
eb136bc
99daaed
eb136bc
99daaed
c00de41
99daaed
c00de41
99daaed
c00de41
99daaed
c00de41
99daaed
eb136bc
99daaed
 
6d06cb9
99daaed
6d06cb9
99daaed
 
6d06cb9
99daaed
 
eb136bc
99daaed
6d06cb9
99daaed
 
6d06cb9
99daaed
6d06cb9
99daaed
 
eb136bc
99daaed
eb136bc
99daaed
eb136bc
99daaed
 
eb136bc
99daaed
6d06cb9
99daaed
 
6d06cb9
99daaed
6d06cb9
99daaed
 
eb136bc
99daaed
eb136bc
99daaed
6044374
99daaed
6044374
99daaed
 
eb136bc
99daaed
 
eb136bc
99daaed
 
6044374
99daaed
 
6044374
99daaed
 
 
6044374
99daaed
 
6044374
99daaed
 
6044374
99daaed
6044374
99daaed
 
eb136bc
99daaed
eb136bc
99daaed
eb136bc
99daaed
eb136bc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from transformers import T5ForConditionalGeneration, T5TokenizerFast
from torch.utils.data import DataLoader
import streamlit as st
import pandas as pd
import torch
import os


# # Let us define the main page
st.markdown("Translation page 🔠")

# # Dropdown for the translation type
# translation_type = st.sidebar.selectbox("Translation Type", options=["French ➡️ Wolof", "Wolof ➡️ French"])

# # define a dictionary of versions
# models = {
#     "Version ✌️": {
#         "French ➡️ Wolof": {
#             "checkpoints": "wolof_translate/checkpoints/t5_small_custom_train_results_fw_v4",
#             "tokenizer": "wolof_translate/tokenizers/t5_tokenizers/tokenizer_v4.json",
#             "max_len": None
#         }
#     },
#     "Version ☝️": {
#         "French ➡️ Wolof": {
#             "checkpoints": "wolof_translate/checkpoints/t5_small_custom_train_results_fw_v3",
#             "tokenizer": "wolof_translate/tokenizers/t5_tokenizers/tokenizer_v3.json",
#             "max_len": 51
#             },
#         "Wolof ➡️ French": {
#             "checkpoints": "wolof_translate/checkpoints/t5_small_custom_train_results_wf_v3",
#             "tokenizer": "wolof_translate/trokenizers/t5_tokenizers/tokenizer_v3.json",
#             "max_len": 51
#         }
#     }
# }

# # add special characters from Wolof
# sp_wolof_chars = pd.read_csv('wolof_translate/data/wolof_writing/wolof_special_chars.csv')

# # add definitions
# sp_wolof_words = pd.read_csv('wolof_translate/data/wolof_writing/definitions.csv')

# # let us add a callback functions to change the input text
# def add_symbol_to_text():
    
#     st.session_state.input_text += st.session_state.symbol

# def add_word_to_text():
    
#     word = st.session_state.word.split('/')[0].strip()
    
#     st.session_state.input_text += word

# # Dropdown for introducing wolof special characters
# if translation_type == "Wolof ➡️ French":
    
#     symbol = st.sidebar.selectbox("Wolof characters", key="symbol", options = sp_wolof_chars['wolof_special_chars'], on_change=add_symbol_to_text)
    
#     word = st.sidebar.selectbox("Wolof words/Definitions", key="word", options = [sp_wolof_words.loc[i, 'wolof']+" / "+sp_wolof_words.loc[i, 'french'] for i in range(sp_wolof_words.shape[0])], on_change=add_word_to_text)

# # Dropdown for the model version
# version = st.sidebar.selectbox("Model version", options=["Version ☝️", "Version ✌️"])

# # Recuperate the number of sentences to provide
# temperature = st.sidebar.slider("How randomly need you the translated sentences to be from 0% to 100%", min_value = 0,
#           max_value = 100)


# # make the process
# try:
    
#     # recuperate the max length
#     max_len = models[version][translation_type]['max_len']
    
#     # let us get the best model
    # @st.cache_resource
#     def get_modelfw_v3():
        
#         # recuperate checkpoints
#         checkpoints = torch.load(os.path.join('wolof_translate/checkpoints/t5_small_custom_train_results_fw_v3', "best_checkpoints.pth"), map_location=torch.device('cpu'))
        
#         # recuperate the tokenizer
#         tokenizer_file = "wolof_translate/tokenizers/t5_tokenizers/tokenizer_v3.json"
        
#         # initialize the tokenizer
#         tokenizer = T5TokenizerFast(tokenizer_file=tokenizer_file)
        
#         model = T5ForConditionalGeneration.from_pretrained('t5-small')
        
#         # resize the token embeddings
#         model.resize_token_embeddings(len(tokenizer))
        
#         model.load_state_dict(checkpoints['model_state_dict'])
        
#         return model, tokenizer
    
#     # @st.cache_resource
#     def get_modelwf_v3():
        
#         # recuperate checkpoints
#         checkpoints = torch.load(os.path.join('wolof_translate/checkpoints/t5_small_custom_train_results_wf_v3', "best_checkpoints.pth"), map_location=torch.device('cpu'))
        
#         # recuperate the tokenizer
#         tokenizer_file = "wolof_translate/tokenizers/t5_tokenizers/tokenizer_v3.json"
        
#         # initialize the tokenizer
#         tokenizer = T5TokenizerFast(tokenizer_file=tokenizer_file)
        
#         model = T5ForConditionalGeneration.from_pretrained('t5-small')
        
#         # resize the token embeddings
#         model.resize_token_embeddings(len(tokenizer))
        
#         model.load_state_dict(checkpoints['model_state_dict'])
        
#         return model, tokenizer

#     if version == "Version ☝️":
        
#         if translation_type == "French ➡️ Wolof":
            
#             model, tokenizer = get_modelfw_v3()
        
#         elif translation_type == "Wolof ➡️ French":
            
#             model, tokenizer = get_modelwf_v3() 

#     # set the model to eval mode
#     _ = model.eval()
    
#     language = "Wolof" if translation_type == "French ➡️ Wolof" else "French"
    
#     # Add a title
#     st.header(f"Translate French sentences to {language} 👌")
    
#     # Recuperate two columns
#     left, right = st.columns(2)

#     if translation_type == "French ➡️ Wolof":

#         # recuperate sentences
#         left.subheader('Give me some sentences in French: ')
    
#     else:

#         # recuperate sentences
#         left.subheader('Give me some sentences in Wolof: ')

#     # for i in range(number):
        
#     left.text_input(f"- Sentence", key = f"input_text")

#     # run model inference on all test data
#     original_translations, predicted_translations, original_texts, scores = [], [], [], {}

#     if translation_type == "French ➡️ Wolof":
        
#         # print a sentence recuperated from the session
#         right.subheader("Translation to Wolof:")
    
#     else:
        
#         # print a sentence recuperated from the session
#         right.subheader("Translation to French:")

#     # for i in range(number):
        
#     sentence = st.session_state[f"input_text"] + tokenizer.eos_token
    
#     if not sentence == tokenizer.eos_token:
    
#         # Let us encode the sentences
#         encoding = tokenizer([sentence], return_tensors='pt', max_length=max_len, padding='max_length', truncation=True)
        
#         # Let us recuperate the input ids
#         input_ids = encoding.input_ids
        
#         # Let us recuperate the mask
#         mask = encoding.attention_mask
        
#         # Let us recuperate the pad token id
#         pad_token_id = tokenizer.pad_token_id
        
#         # perform prediction
#         predictions = model.generate(input_ids, do_sample = False, top_k = 50, max_length = max_len, top_p = 0.90,
#                                         temperature = temperature/100, num_return_sequences = 0, attention_mask = mask, pad_token_id = pad_token_id)
        
#         # decode the predictions
#         predicted_sentence = tokenizer.batch_decode(predictions, skip_special_tokens = True)
        
#         # provide the prediction
#         right.write(f"Translation: {predicted_sentence[0]}")
        
#     else:
        
#         # provide the prediction
#         right.write(f"Translation: ")
    
# except Exception as e:
    
#     st.warning("The chosen model is not available yet !", icon = "⚠️")
    
#     st.write(e)