Spaces:
Runtime error
Runtime error
File size: 37,033 Bytes
5edac6d 32f9e57 5edac6d d3ca070 7c3ceb1 5747010 32f9e57 5747010 9ed883a d90b6b8 702d11f d421a6e 5edac6d 702d11f 5edac6d 702d11f dc66c9a be19420 7c3ceb1 8a383d3 32f9e57 5edac6d 73f1d5f 5edac6d a331c7b ff0411d a331c7b 5edac6d 66d2fc7 0ded0b0 66d2fc7 5edac6d 73f1d5f 5edac6d 73f1d5f 5edac6d ccf3df7 87aeca0 5edac6d 860b20f 87aeca0 860b20f 9ed883a f62a7d4 ae6b6a0 f62a7d4 ae6b6a0 9ed883a d90b6b8 8eca13f d90b6b8 93d657b d90b6b8 0952397 a331c7b d90b6b8 0952397 d90b6b8 454ef36 96a8500 1212925 ccec0f4 5cea955 d90b6b8 454ef36 9ed883a ccf3df7 454ef36 9ed883a 5edac6d 860b20f 5edac6d 56fd6e3 5edac6d 56fd6e3 5edac6d 56fd6e3 5edac6d 860b20f 5edac6d 5cc514e 5edac6d 7206363 5edac6d 7206363 5edac6d 860b20f ebe38e7 5edac6d 860b20f 5edac6d 2e6d65c 9ef9d5a 5edac6d 9ed883a 5edac6d 2e6d65c d1b54e9 45c3baa 6a0d0d0 d1b54e9 0d29a46 2e6d65c 5edac6d 5eb43d6 21c6a29 5edac6d 38e525d fc18035 ae678bc fc18035 ae678bc 608896e fc18035 97419ef a844ec1 5d40f7a a844ec1 97419ef 2a23b6c 6234322 2a23b6c c5a073b 2a23b6c 97419ef a844ec1 32f9e57 a844ec1 608896e 32f9e57 e4cdf4d fc18035 860b20f 45c3baa ac9ad2c 5edac6d 36b2f88 e4cdf4d 65d9d5b e4cdf4d 5120a66 e4cdf4d 36b2f88 be68c2c 5edac6d 5747010 32f9e57 ddf6d4e 32f9e57 860b20f 32f9e57 ddf6d4e 32f9e57 103546a 860b20f 103546a dc66c9a 103546a 32f9e57 dc66c9a 32f9e57 e90de0c 76bc1a2 e90de0c 262ef94 5747010 e90de0c b309c40 d3ca070 5edac6d 32f9e57 5edac6d e81a698 5edac6d e81a698 5edac6d a331c7b 5edac6d 97582ea 5bf7302 675cfe9 42e0044 1bc0c07 5bf7302 881af9d 0d29a46 d349042 881af9d 97582ea 881af9d 5edac6d e81a698 73f1d5f c184879 73f1d5f 66d2fc7 adce112 e81a698 adce112 66d2fc7 e81a698 5edac6d 59891c7 d421a6e 76bc1a2 a119d31 76bc1a2 a119d31 76bc1a2 a119d31 76bc1a2 36e015f 1d3b1f7 36e015f 1d3b1f7 36e015f 1d3b1f7 36e015f 1d3b1f7 36e015f 990cad9 e81a698 8a383d3 ff0411d 4101c27 8a383d3 e81a698 51af174 e81a698 51af174 e81a698 ff0411d e81a698 51af174 e81a698 4101c27 29844b7 51af174 29844b7 e81a698 86677df 990cad9 be19420 c95d0d3 31b53f0 be19420 e81a698 8a383d3 24f1cbd e81a698 24f1cbd e81a698 24f1cbd e81a698 c68e8a7 24f1cbd e81a698 24f1cbd 699c648 4938fd8 dd27da8 4938fd8 ad276ce ff0411d 1dfbc55 31b53f0 1dfbc55 798f846 d9e36f7 835be01 1e3d783 1bc0c07 f10a15b 5546b26 1bc0c07 f10a15b 4101c27 ab60cf4 798f846 1bc0c07 4ebc48f 52f7098 4ebc48f b924e22 16ef1ca f03195a 2474159 4ebc48f ad0bfa9 24f1cbd ad0bfa9 4ebc48f ad0bfa9 ab60cf4 be19420 28026f6 4ebc48f 28026f6 250dec4 1e3d783 be19420 84283c6 2f0bcb7 36aeae9 29844b7 9566273 798f846 7b401d5 36aeae9 798f846 7b401d5 5546b26 2255560 28026f6 d421a6e 5edac6d 97419ef 5edac6d 97419ef 5edac6d 97419ef 5edac6d 32f9e57 5edac6d 5e58f51 5edac6d 5e58f51 5edac6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 |
# from typing import Any, Coroutine
import openai
import os
# from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationBufferWindowMemory
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.agents import OpenAIMultiFunctionsAgent
from langchain.prompts import MessagesPlaceholder
from langchain.schema.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
SystemMessage,
)
from langchain import LLMChain
import azure.cognitiveservices.speech as speechsdk
import requests
import sys
import pinecone
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time
import glob
from typing import List
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
import langchain
langchain.debug = True
global memory2
memory2 = ConversationBufferWindowMemory(memory_key="chat_history")
global memory_openai
memory_openai = ConversationBufferWindowMemory(memory_key="memory", return_messages=True)
global last_request
last_request = ""
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
source_directory = 'Upload Files'
global file_list_loaded
file_list_loaded = ''
chunk_size = 500
chunk_overlap = 300
global Audio_output
Audio_output = []
global Filename_Chatbot
Filename_Chatbot = ""
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
# all_files = []
# for ext in LOADER_MAPPING:
# all_files.extend(
# glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
# )
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for file in filtered_files:
docs = load_single_document(file)
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def UpdateDb():
global vectordb_p
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_2()
tt = len(split_docs)
print(split_docs[tt-1])
print(f"Creating embeddings. May take some minutes...")
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
class DB_Search(BaseTool):
name = "Vector_Database_Search"
description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
class DB_Search2(BaseTool):
name = "Vector Database Search"
description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
def Text2Sound(text):
speech_config = speechsdk.SpeechConfig(subscription=os.getenv('SPEECH_KEY'), region=os.getenv('SPEECH_REGION'))
audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
speech_config.speech_synthesis_voice_name='en-US-JennyNeural'
# speech_synthesizer = ""
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(text).get()
# if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# print("Speech synthesized for text [{}]".format(text))
# elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled:
# cancellation_details = speech_synthesis_result.cancellation_details
# print("Speech synthesis canceled: {}".format(cancellation_details.reason))
# if cancellation_details.reason == speechsdk.CancellationReason.Error:
# if cancellation_details.error_details:
# print("Error details: {}".format(cancellation_details.error_details))
# print("Did you set the speech resource key and region values?")
print("test")
return speech_synthesis_result
pass
def get_azure_access_token():
azure_key = os.environ.get("SPEECH_KEY")
try:
response = requests.post(
"https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken",
headers={
"Ocp-Apim-Subscription-Key": azure_key
}
)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
# print (response.text)
return response.text
def text_to_speech_2(text):
global Audio_output
access_token = get_azure_access_token()
voice_name='en-US-AriaNeural'
if not access_token:
return None
try:
response = requests.post(
"https://eastus.tts.speech.microsoft.com/cognitiveservices/v1",
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/ssml+xml",
"X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm",
"User-Agent": "TextToSpeechApp",
},
data=f"""
<speak version='1.0' xml:lang='en-US'>
<voice name='{voice_name}'>
{text}
</voice>
</speak>
""",
)
response.raise_for_status()
timestr = time.strftime("%Y%m%d-%H%M")
with open('sample-' + timestr + '.wav', 'wb') as audio:
audio.write(response.content)
print ("File Name ", audio.name)
# print (audio)
Audio_output.append(audio.name)
# return audio.name
return audio
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
Text2Sound_tool = Tool(
name = "Text_To_Sound_REST_API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Text2Sound_tool2 = Tool(
name = "Text To Sound REST API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()
wikipedia_tool = Tool(
name = "Wikipedia_Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool = Tool(
name = "Duckduckgo_Internet_Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool = Tool(
name = "Python_REPL",
func = Python_REPL.run,
description = "Useful when you need python to answer questions. You should input python code."
)
wikipedia_tool2 = Tool(
name = "Wikipedia Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool2 = Tool(
name = "Duckduckgo Internet Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool2 = Tool(
name = "Python REPL",
func = Python_REPL.run,
description = "Useful when you need python to answer questions. You should input python code."
)
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_VERSION"] = os.getenv("OPENAI_API_VERSION")
# os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.getenv("username")
password = os.getenv("password")
SysLock = os.getenv("SysLock") # 0=unlock 1=lock
# deployment_name="Chattester"
chat = AzureChatOpenAI(
deployment_name=os.getenv("deployment_name"),
temperature=0,
)
llm = chat
llm_math = LLMMathChain.from_llm(llm)
math_tool = Tool(
name ='Calculator',
func = llm_math.run,
description ='Useful for when you need to answer questions about math.'
)
# openai
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool, Text2Sound_tool]
tools2 = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool, Text2Sound_tool2]
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
pinecone.init(
api_key = os.getenv("pinecone_api_key"),
environment='asia-southeast1-gcp-free',
# openapi_config=openapi_config
)
index_name = 'stla-baby'
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
# print(pinecone.whoami())
# print(index.describe_index_stats())
"""
Answer the following questions as best you can with details.
You can always use tools to convert text to sound.
You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math.
Text To Sound: Useful when you need to convert text into sound file."""
PREFIX = """Answer the following questions as best you can with detail information and explanation.
You can always use tools to convert text to sound.
You must always check vector database first and try to answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:"""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
SUFFIX = """Begin!
Request: {input}
Thought:{agent_scratchpad}"""
SUFFIX2 = """Begin!
{chat_history}
Question: {input}
Thought:{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=PREFIX,
suffix=SUFFIX,
# suffix=SUFFIX2,
format_instructions=FORMAT_INSTRUCTIONS,
input_variables=["input", "agent_scratchpad"]
# input_variables=["input", "chat_history", "agent_scratchpad"]
)
prompthead_openai_1 = \
"""
You are a helpful AI assistant. Your mission is to answer the following request as best as you can with detail information and explanation.
You must always check vector database first and try to answer the request based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
"""
prompthead_openai_OR = \
"""
You are a helpful AI assistant.
"""
prompthead_openai = \
"""
You are a helpful AI assistant to answer the following questions as best as you can with detail information.
You must always search information in vector database first and answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other method.
"""
prompt_openai = OpenAIMultiFunctionsAgent.create_prompt(
system_message = SystemMessage(
content = prompthead_openai),
# extra_prompt_messages = [MessagesPlaceholder(variable_name="memory")],
)
input_variables=["input", "chat_history", "agent_scratchpad"]
agent_ZEROSHOT_REACT = initialize_agent(tools2, llm,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
agent_kwargs={
'prefix': PREFIX,
'format_instructions': FORMAT_INSTRUCTIONS,
'suffix': SUFFIX,
# 'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
# llm_chain_openai = LLMChain(llm=llm, prompt=prompt_openai, verbose=True)
agent_core = ZeroShotAgent(llm_chain=llm_chain, tools=tools2, verbose=True)
agent_core_openai = OpenAIMultiFunctionsAgent(llm=llm, tools=tools, prompt=prompt_openai, verbose=True)
agent_ZEROSHOT_AGENT = AgentExecutor.from_agent_and_tools(
agent=agent_core,
tools=tools2,
verbose=True,
# memory=memory,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
)
agent_OPENAI_MULTI = AgentExecutor.from_agent_and_tools(
agent=agent_core_openai,
tools=tools,
verbose=True,
# memory=memory_openai,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
)
# agent.max_execution_time = int(os.getenv("max_iterations"))
# agent.handle_parsing_errors = True
# agent.early_stopping_method = "generate"
global agent
Choice = os.getenv("agent_type")
if Choice =='Zero Short Agent':
agent = agent_ZEROSHOT_AGENT
print("Set to:", Choice)
elif Choice =='Zero Short React':
agent = agent_ZEROSHOT_REACT
print("Set to:", Choice)
elif Choice =='OpenAI Multi':
agent = agent_OPENAI_MULTI
print("Set to:", Choice)
# agent = agent_ZEROSHOT_AGENT
# print(agent.agent.llm_chain.prompt.template)
# print(agent.agent.llm_chain.prompt)
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history1):
# response = "I don't know"
# print(message)
response, source = QAQuery_p(message)
time.sleep(0.3)
print(history1)
yield response
# yield history
def chathmi2(message, history):
global Audio_output
try:
output = agent.run(message)
time.sleep(0.3)
response = output
yield response
print ("response of chatbot:", response)
print ("\n")
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
dis_audio = []
dis_audio.append(file_name)
# yield dis_audio
yield dis_audio
except:
pass
if len(Audio_output) > 0:
# time.sleep(0.5)
# yield Audio_output
Audio_output = []
print("History: ", history)
print("-" * 20)
print("-" * 20)
except Exception as e:
print("error:", e)
# yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
def func_upload_file(files, chat_history2):
global file_list_loaded
file_list_loaded = []
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history2 = chat_history2 + [((file.name,), None)]
yield chat_history2
if os.getenv("SYS_Upload_Enable") == "1":
UpdateDb()
test_msg = ["Request Upload File into DB", "Operation Finished"]
chat_history2.append(test_msg)
yield chat_history2
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
def SetAgent(Choice):
global agent
if Choice =='Zero Short Agent':
agent = agent_ZEROSHOT_AGENT
print("Set to:", Choice)
elif Choice =='Zero Short React':
agent = agent_ZEROSHOT_REACT
print("Set to:", Choice)
elif Choice =='OpenAI Multi':
agent = agent_OPENAI_MULTI
print("Set to:", Choice)
global record
record = []
def LinkElement(chatbot_history):
'''
Link chatbot display output with other UI
'''
global record
if record != chatbot_history:
last_response = chatbot_history[-1:][1]
print("last response:", last_response)
record = chatbot_history
print(chatbot_history)
# print("link element test")
else:
print("From linkelement: ", chatbot_history)
pass
def chathmi3(message, history2):
global last_request
global Filename_Chatbot
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2]
try:
response = agent.run(message)
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield ["", history2]
except:
print("No need to add file in chatbot")
except Exception as e:
print("chathmi3 error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def chathmi4(message, history2):
global last_request
global Filename_Chatbot
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
try:
response = agent.run(message)
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield ["", history2, None, None]
except:
print("No need to add file in chatbot")
except Exception as e:
print("chathmi3 error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def fake(message, history4):
pass
def clearall():
# global memory_openai
# global memory
# memory_openai.clear()
# memory.clear()
global Filename_Chatbot
Filename_Chatbot = []
return []
def retry(history3):
global last_request
print("last_request", last_request)
message = last_request
history3 = history3 + [(message, None)]
yield history3
try:
response = agent.run(message)
time.sleep(0.1)
history3 = history3 + [(None, response)]
print ("response of chatbot:", response)
yield history3
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
history3 = history3 + [(None, (file_name,))]
yield history3
except:
print("No need to add file in chatbot")
except Exception as e:
print("chathmi3 error:", e)
# yield chathmi3(last_request, chatbot_history)
def display_input(message, history2):
global last_request
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
return history2
def Inference_Agent(history_inf):
global last_request
message = last_request
try:
response = agent.run(message)
time.sleep(0.1)
history_inf = history_inf + [(None, response)]
return ["",history_inf]
except Exception as e:
print("error:", e)
def ClearText():
return ""
def playsound():
global Filename_Chatbot
try:
if Filename_Chatbot.split(".")[1] == 'wav':
soundfilename = Filename_Chatbot
print("soundfilename:", soundfilename)
return gr.update(value = soundfilename)
except:
pass
def HMI_Runing():
return [gr.update(visible=False), gr.update(visible=True)]
def HMI_Wait():
return [gr.update(visible=True), gr.update(visible=False)]
with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **SUBMIT** to see the output.")
# main = gr.ChatInterface(
# fake,
# title="STLA BABY - YOUR FRIENDLY GUIDE",
# description= "v0.3: Powered by MECH Core Team",
# )
# main.textbox.submit(chathmi3, [main.textbox, main.chatbot], [main.textbox, main.chatbot])
with gr.Column() as main2:
title = gr.Markdown("""# <center> STLA BABY - YOUR FRIENDLY GUIDE
<center> v0.4: Powered by MECH Core Team"""),
chatbot = gr.Chatbot()
with gr.Row():
inputtext = gr.Textbox(
scale= 4,
label="",
placeholder = "Input Your Question",
show_label = False,
)
submit_button = gr.Button("SUBMIT", variant="primary", visible=True)
stop_button = gr.Button("STOP", variant='stop', visible=False)
with gr.Row():
agentchoice = gr.Dropdown(
choices=['Zero Short Agent','Zero Short React','OpenAI Multi'],
label="SELECT AI AGENT",
scale= 2,
show_label = True,
value="OpenAI Multi",
)
voice_input = gr.Audio(
source="microphone",
type="filepath",
scale= 1,
label= "INPUT",
)
voice_output = gr.Audio(
source="microphone",
type="filepath",
scale= 1,
interactive=False,
autoplay= True,
label= "OUTPUT",
)
upload_button = gr.UploadButton("✡️ INGEST DB", file_count="multiple", scale= 0, variant="secondary")
upload_file_button = gr.UploadButton("📁 UPLOAD", file_count="single", scale= 0, variant="secondary")
retry_button = gr.Button("RETRY")
clear_button = gr.Button("CLEAR")
with gr.Accordion(
label = "LOGS",
open = False,
):
# logs = gr.Textbox()
frash_logs = gr.Button("Update Logs ...")
logs = gr.Textbox(max_lines = 25)
# upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)
clear_button.click(clearall, None, chatbot)
retry_button.click(retry, chatbot, chatbot)
# inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
# then(playsound, None, voice_output)
# inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
# then(HMI_Runing, None, [submit_button, stop_button]).\
# then(playsound, None, voice_output).\
# then(HMI_Wait, None, [submit_button, stop_button])
inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
then(playsound, None, voice_output)
inf3 = submit_button.click(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
then(HMI_Runing, None, [submit_button, stop_button]).\
then(playsound, None, voice_output).\
then(HMI_Wait, None, [submit_button, stop_button])
# inf2 = inputtext.submit(display_input, [inputtext, chatbot], chatbot).\
# then(Inference_Agent, chatbot, [inputtext, chatbot])
stop_button.click(read_logs, None, logs, cancels=[inf4,inf3]).\
then(HMI_Wait, None, [submit_button, stop_button])
# stop_button.click(read_logs, None, logs, cancels=[inf2])
upload_button.upload(func_upload_file, [upload_button, chatbot], chatbot)
agentchoice.change(SetAgent, agentchoice, None)
frash_logs.click(read_logs, None, logs)
# demo.load(read_logs, None, logs, every=1)
# demo = gr.Interface(
# chathmi,
# ["text", "state"],
# [chatbot, "state"],
# allow_flagging="never",
# )
def CreatDb_P():
global vectordb_p
index_name = 'stla-baby'
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
pinecone.Index(index_name).delete(delete_all=True, namespace='')
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
def QAQuery_p(question: str):
global vectordb_p
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb_p.as_retriever()
retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k"))
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
# print("Question:", question)
# print("Answer:", res)
# print("Answer:", res['result'])
print("-" * 20)
# print("Source:", res['source_documents'])
response = res['result']
# response = res['source_documents']
source = res['source_documents']
return response, source
# def CreatDb():
# '''
# Funtion to creat chromadb DB based on with all docs
# '''
# global vectordb
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# vectordb.persist()
def QAQuery(question: str):
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever()
retriever.search_kwargs['k'] = 3
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
return response
# Used to complete content
def completeText(Text):
deployment_id="Chattester"
prompt = Text
completion = openai.Completion.create(deployment_id=deployment_id,
prompt=prompt, temperature=0)
print(f"{prompt}{completion['choices'][0]['text']}.")
# Used to chat
def chatText(Text):
deployment_id="Chattester"
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
user_input = Text
conversation.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(messages=conversation,
deployment_id="Chattester")
print("\n" + response["choices"][0]["message"]["content"] + "\n")
if __name__ == '__main__':
# chatText("what is AI?")
# CreatDb()
# QAQuery("what is COFOR ?")
# CreatDb_P()
# QAQuery_p("what is GST ?")
if SysLock == "1":
demo.queue().launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
else:
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
pass
|