File size: 50,414 Bytes
5edac6d
 
 
32f9e57
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ca070
7c3ceb1
5747010
32f9e57
 
dd10a48
32f9e57
 
 
 
 
 
5747010
9ed883a
d90b6b8
702d11f
d421a6e
5edac6d
 
 
 
 
 
b874666
5edac6d
 
ed94ada
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
1a80a66
5edac6d
 
 
702d11f
1f72e50
 
 
b874666
f7bfe98
b874666
 
4dee166
b874666
 
d0fdfbe
b874666
 
 
 
 
 
 
d0fdfbe
b874666
 
 
 
e34124f
3f81762
 
 
 
b874666
 
 
bb0c9ca
b874666
d0fdfbe
4dee166
f7bfe98
639a660
1f72e50
e0e9602
 
1f72e50
 
 
 
 
 
 
 
 
 
f5f3d9d
1f72e50
 
 
 
2b6080b
1f72e50
 
 
 
 
 
 
2d0e444
f7bfe98
 
2b6080b
1f72e50
2b6080b
1f72e50
 
 
2b6080b
1f72e50
 
691b17c
5edac6d
702d11f
dc66c9a
 
be19420
7c3ceb1
8a383d3
 
32f9e57
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a80a66
 
5edac6d
 
 
 
73f1d5f
 
5edac6d
 
 
a331c7b
 
 
ff0411d
 
a331c7b
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66d2fc7
 
 
 
 
 
 
 
 
 
 
0ded0b0
 
 
 
 
 
 
66d2fc7
 
 
 
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f1d5f
5edac6d
73f1d5f
 
5edac6d
 
 
 
 
 
 
 
 
 
 
d43825c
5edac6d
 
 
 
 
 
 
 
d43825c
5edac6d
 
 
dd10a48
 
 
 
 
 
 
 
 
e25f3f3
dd10a48
 
 
e25f3f3
dd10a48
 
 
 
e25f3f3
dd10a48
 
5edac6d
 
ccf3df7
87aeca0
5edac6d
 
 
 
 
 
 
 
860b20f
 
87aeca0
860b20f
 
 
 
 
 
 
 
 
9ed883a
f62a7d4
32f0c73
f62a7d4
 
 
 
 
ae6b6a0
 
 
 
 
 
 
 
 
 
f62a7d4
ae6b6a0
9ed883a
d90b6b8
 
 
8eca13f
d90b6b8
 
 
 
 
 
 
 
 
 
 
93d657b
d90b6b8
 
 
0952397
a331c7b
d90b6b8
0952397
d90b6b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3189246
454ef36
 
 
96a8500
1212925
ccec0f4
5cea955
d90b6b8
 
 
fce2699
 
 
 
454ef36
fce2699
 
 
 
 
 
 
 
 
 
b87aac4
f38cdce
53aaa23
b87aac4
fce2699
 
 
 
 
 
9ed883a
ccf3df7
454ef36
 
9ed883a
 
5edac6d
860b20f
 
 
 
 
 
 
 
5edac6d
 
 
 
 
56fd6e3
5edac6d
 
 
 
 
56fd6e3
5edac6d
 
 
 
 
56fd6e3
5edac6d
 
 
 
860b20f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5edac6d
 
 
 
32f0c73
 
 
5cc514e
32f0c73
 
 
5edac6d
7206363
 
5edac6d
32f0c73
5edac6d
 
4dee166
 
235a43e
4dee166
235a43e
5edac6d
 
 
 
 
 
 
 
 
860b20f
ebe38e7
 
5edac6d
860b20f
 
5edac6d
 
4dee166
 
 
 
 
 
 
 
2b391b7
af5e898
 
 
4dee166
2b391b7
 
4dee166
5edac6d
130d120
5edac6d
 
32f0c73
2b391b7
 
5edac6d
 
2b391b7
d43825c
2b391b7
5edac6d
 
2b391b7
 
5edac6d
2e6d65c
9ef9d5a
 
 
 
 
 
5edac6d
 
 
 
9ed883a
 
5edac6d
2e6d65c
d1b54e9
45c3baa
6a0d0d0
d1b54e9
0d29a46
2e6d65c
5edac6d
 
 
 
 
 
 
 
 
 
 
 
5eb43d6
21c6a29
5edac6d
 
38e525d
 
 
 
 
 
 
fc18035
 
 
ae678bc
 
fc18035
ae678bc
608896e
fc18035
 
97419ef
a844ec1
 
5d40f7a
a844ec1
 
 
 
 
 
97419ef
2a23b6c
6234322
2a23b6c
c5a073b
2a23b6c
97419ef
a844ec1
32f9e57
 
a844ec1
608896e
32f9e57
 
e4cdf4d
fc18035
235a43e
860b20f
45c3baa
ac9ad2c
5edac6d
 
32f0c73
5edac6d
36b2f88
e4cdf4d
 
 
65d9d5b
e4cdf4d
5120a66
e4cdf4d
 
 
36b2f88
be68c2c
5edac6d
235a43e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5747010
c06dab4
32f9e57
51af721
b4e8d18
ddf6d4e
32f9e57
860b20f
c06dab4
32f9e57
ddf6d4e
32f9e57
 
103546a
860b20f
103546a
dc66c9a
103546a
32f0c73
103546a
 
32f9e57
c06dab4
 
 
 
 
 
 
 
 
 
 
32f9e57
 
 
 
dc66c9a
32f9e57
32f0c73
32f9e57
 
 
 
 
 
e90de0c
1357aec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76bc1a2
32f0c73
1357aec
c06dab4
235a43e
262ef94
5747010
e90de0c
b309c40
d3ca070
5edac6d
 
32f9e57
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81a698
5edac6d
 
 
 
e81a698
5edac6d
 
 
 
a331c7b
5edac6d
 
 
 
 
97582ea
5bf7302
 
 
 
 
 
 
675cfe9
 
42e0044
1bc0c07
5bf7302
 
881af9d
0d29a46
d349042
881af9d
97582ea
881af9d
 
 
5edac6d
 
 
 
 
 
 
e81a698
73f1d5f
c184879
12e63ff
c184879
 
 
73f1d5f
66d2fc7
adce112
 
 
 
e81a698
 
32f0c73
adce112
66d2fc7
e81a698
 
5edac6d
dd10a48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59891c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d421a6e
 
 
 
 
1357aec
 
76bc1a2
36e015f
 
 
1d3b1f7
36e015f
 
 
 
1d3b1f7
 
36e015f
1d3b1f7
 
36e015f
 
1d3b1f7
36e015f
990cad9
e81a698
8a383d3
ff0411d
1357aec
4101c27
8a383d3
e81a698
 
51af174
1357aec
 
 
 
51af174
e81a698
 
51af174
 
 
 
 
 
 
e81a698
ff0411d
e81a698
51af174
 
 
 
 
 
 
 
e81a698
4101c27
 
29844b7
 
 
 
1357aec
29844b7
1357aec
29844b7
 
39c814c
 
29844b7
1357aec
 
 
 
 
29844b7
 
39c814c
 
29844b7
 
 
 
 
 
 
 
1357aec
 
29844b7
 
 
 
ad9c00b
8ff0718
29844b7
1357aec
29844b7
 
 
 
2d0e444
ad9c00b
 
2d0e444
ad9c00b
2d0e444
 
ad9c00b
 
 
 
 
2d0e444
 
ad9c00b
2d0e444
ad9c00b
 
 
 
 
 
2d0e444
ad9c00b
2d0e444
ad9c00b
 
 
 
 
 
 
 
2d0e444
ad9c00b
 
b85e015
e81a698
86677df
990cad9
be19420
 
c95d0d3
 
 
 
31b53f0
 
84b12cb
be19420
e81a698
8a383d3
 
24f1cbd
e81a698
 
24f1cbd
 
 
 
e81a698
24f1cbd
e81a698
c68e8a7
24f1cbd
 
 
 
 
 
e81a698
 
24f1cbd
 
 
 
 
 
699c648
4938fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
dd27da8
4938fd8
 
 
ad276ce
 
 
6c448c0
ff0411d
1f4422f
1dfbc55
 
 
31b53f0
93eb493
19bc884
93eb493
ddae241
57476cc
3744ac2
359c2b8
3744ac2
 
6c448c0
 
 
 
 
 
 
ed94ada
bd571b5
ed94ada
 
6c448c0
a30b66b
6c448c0
1dfbc55
798f846
 
 
 
 
 
 
28585d6
153e8b3
 
3a91f8d
28585d6
ada225d
 
 
 
a46f21b
ada225d
691b17c
199fdd9
4ce79fb
 
 
 
 
 
 
 
 
 
 
ada225d
f65f35d
 
 
b87aac4
f65f35d
b450bc8
b87aac4
 
f65f35d
 
f38cdce
f65f35d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b87aac4
d9e36f7
835be01
1e3d783
 
 
 
 
 
1bc0c07
f10a15b
5546b26
4dee166
1bc0c07
f10a15b
4101c27
 
 
 
 
 
ab60cf4
798f846
1bc0c07
4ebc48f
52f7098
4ebc48f
1357aec
b924e22
16ef1ca
f03195a
2474159
4ebc48f
ad0bfa9
 
 
24f1cbd
ad0bfa9
 
4ebc48f
 
 
 
9d34141
ad0bfa9
 
 
ab60cf4
12e63ff
be19420
 
28026f6
 
 
 
4ebc48f
28026f6
250dec4
ad9c00b
 
d43825c
ad9c00b
 
1e3d783
84b12cb
6c448c0
9be3d38
 
2f0bcb7
 
36aeae9
 
 
 
7a3944e
c620be9
 
 
569bae0
2d0e444
c620be9
 
 
2d0e444
9566273
ffa907c
6c448c0
a45d345
569bae0
ad9c00b
7b401d5
 
36aeae9
798f846
7b401d5
5546b26
d3f03f4
2255560
28026f6
ada225d
 
3a7d53a
 
 
153e8b3
4df10d7
 
 
ecc6c2f
4df10d7
153e8b3
28026f6
d421a6e
 
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32f0c73
5edac6d
 
 
 
 
 
 
 
 
 
97419ef
5edac6d
97419ef
5edac6d
97419ef
5edac6d
 
 
 
 
32f9e57
 
 
 
 
 
 
 
 
 
 
 
5edac6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06105c0
 
d43825c
5edac6d
5e58f51
5edac6d
5e58f51
5edac6d
1f72e50
5edac6d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
# from typing import Any, Coroutine
import openai
import os
# from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA  
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationBufferWindowMemory
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.agents import OpenAIMultiFunctionsAgent
from langchain.prompts import MessagesPlaceholder
from langchain.chains.summarize import load_summarize_chain
from langchain.schema.messages import (
    AIMessage,
    BaseMessage,
    FunctionMessage,
    SystemMessage,
)
from langchain import LLMChain
import azure.cognitiveservices.speech as speechsdk
import requests

import sys
import pinecone      
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time

import glob
from typing import Any, List, Mapping, Optional
from multiprocessing import Pool
from tqdm import tqdm
from pygame import mixer

from langchain.document_loaders import (
    CSVLoader,
    EverNoteLoader,
    PyMuPDFLoader,
    TextLoader,
    UnstructuredEmailLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
    UnstructuredExcelLoader
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
import langchain
import asyncio
from playwright.async_api import async_playwright

from langchain.embeddings.huggingface import HuggingFaceEmbeddings

from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun


class GPTRemote(LLM):
    n: int

    @property
    def _llm_type(self) -> str:
        return "custom"
    
    def _call(
            self, 
            prompt: str, 
            stop: Optional [List[str]] = None, 
            run_manager: Optional[CallbackManagerForLLMRun] = None, 
            **kwargs: Any
            ) -> str:
        print("prompt:", prompt)
        if stop :
            output = asyncio.run(start_playwright(prompt))
            # output = "test custom llm"
            return output
    
    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        return [("n", self.n)]

GPTfake = GPTRemote(n=0)


async def start_playwright(question: str):
    pw = await async_playwright().start()
    browser = await pw.chromium.launch(headless=True)
    # browser = await pw.webkit.launch(headless=True)
    page = await browser.new_page()

    # note all methods are async (use the "await" keyword)
    await page.goto("https://basicchatbot.azurewebsites.net/")
    print("Title of Web: ", await page.title())
    await page.wait_for_timeout(200)
#     print("Content of Web: ", await page.content())
#     print("Test content: ", await page.locator("//div[@class='css-zt5igj e1nzilvr3']").inner_html())
    print("Test content: ", await page.locator("//div[@class='css-zt5igj e1nzilvr3']").inner_text())
    
    await page.locator("//textarea").fill(question)
    await page.wait_for_timeout(200)
#     print("Content of Web: ", await page.content())
#     await page.locator("//button[@class='css-1wi2cd3 e1d2x3se3']").click()
    await page.locator("//textarea").press("Enter")
    await page.wait_for_timeout(2000)
#     print("Content of Web: ", await page.content())
#     print("output_text 1", await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text())
#     output_text = await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text()
#     print("output_text 1", output_text)
    output_history = "NOTHING"
    for i in range(40):
        output_text = await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text()
        print("output_text... :")
        
        if output_text == output_history and '▌' not in output_text:
            return output_text
        else:
            await page.wait_for_timeout(500)
            output_history = output_text
    print("-------- Final Answer-----------\n", output_text)
    await browser.close()
    


# import playsound

langchain.debug = True
global memory2
memory2 = ConversationBufferWindowMemory(memory_key="chat_history")
global memory_openai
memory_openai = ConversationBufferWindowMemory(memory_key="memory", return_messages=True)
global last_request
last_request = ""

# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
    """Wrapper to fallback to text/plain when default does not work"""

    def load(self) -> List[Document]:
        """Wrapper adding fallback for elm without html"""
        try:
            try:
                doc = UnstructuredEmailLoader.load(self)
            except ValueError as e:
                if 'text/html content not found in email' in str(e):
                    # Try plain text
                    self.unstructured_kwargs["content_source"]="text/plain"
                    doc = UnstructuredEmailLoader.load(self)
                else:
                    raise
        except Exception as e:
            # Add file_path to exception message
            raise type(e)(f"{self.file_path}: {e}") from e

        return doc
    
LOADER_MAPPING = {
    ".csv": (CSVLoader, {}),
    # ".docx": (Docx2txtLoader, {}),
    ".doc": (UnstructuredWordDocumentLoader, {}),
    ".docx": (UnstructuredWordDocumentLoader, {}),
    ".enex": (EverNoteLoader, {}),
    ".eml": (MyElmLoader, {}),
    ".epub": (UnstructuredEPubLoader, {}),
    ".html": (UnstructuredHTMLLoader, {}),
    ".md": (UnstructuredMarkdownLoader, {}),
    ".odt": (UnstructuredODTLoader, {}),
    ".pdf": (PyMuPDFLoader, {}),
    ".ppt": (UnstructuredPowerPointLoader, {}),
    ".pptx": (UnstructuredPowerPointLoader, {}),
    ".txt": (TextLoader, {"encoding": "utf8"}),
    ".xls": (UnstructuredExcelLoader, {}),
    ".xlsx": (UnstructuredExcelLoader, {"mode":"elements"}),
    # Add more mappings for other file extensions and loaders as needed
}

source_directory = 'Upload Files'
global file_list_loaded
file_list_loaded = ''
chunk_size = 500
chunk_overlap = 300

global Audio_output
Audio_output = []

global Filename_Chatbot
Filename_Chatbot = ""

def load_single_document(file_path: str) -> List[Document]:
    ext = "." + file_path.rsplit(".", 1)[-1]
    if ext in LOADER_MAPPING:
        loader_class, loader_args = LOADER_MAPPING[ext]
        loader = loader_class(file_path, **loader_args)
        return loader.load()

    raise ValueError(f"Unsupported file extension '{ext}'")


def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
    """
    Loads all documents from the source documents directory, ignoring specified files
    """
    all_files = []
    for ext in LOADER_MAPPING:
        all_files.extend(
            glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
        )
    filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]

    with Pool(processes=os.cpu_count()) as pool:
        results = []
        with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
            for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
                results.extend(docs)
                pbar.update()

    return results

def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]:
    """
    Loads all documents from the source documents directory, ignoring specified files
    """
    # all_files = []
    # for ext in LOADER_MAPPING:
    #     all_files.extend(
    #         glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
    #     )
    filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]


    results = []
    with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
        for file in filtered_files:
            docs = load_single_document(file)
            results.extend(docs)
            pbar.update()

    return results


def process_documents(ignored_files: List[str] = []) -> List[Document]:
    """
    Load documents and split in chunks
    """
    print(f"Loading documents from {source_directory}")
    documents = load_documents(source_directory, ignored_files)
    if not documents:
        print("No new documents to load")
        exit(0)
    print(f"Loaded {len(documents)} new documents from {source_directory}")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    texts = text_splitter.split_documents(documents)
    print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
    return texts

def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
    """
    Load documents and split in chunks
    """
    global file_list_loaded
    print(f"Loading documents from {source_directory}")
    print("File Path to start processing:", file_list_loaded)
    documents = load_documents_2(file_list_loaded, ignored_files)
    if not documents:
        print("No new documents to load")
        exit(0)
    print(f"Loaded {len(documents)} new documents from {source_directory}")
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    texts = text_splitter.split_documents(documents)
    print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
    return texts

def UpdateDb():
    global vectordb_p
    global index_name
    # pinecone.Index(index_name).delete(delete_all=True, namespace='')
    # collection = vectordb_p.get()
    # split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
    # split_docs = process_documents()
    split_docs = process_documents_2()
    tt = len(split_docs)
    print(split_docs[tt-1])
    print(f"Creating embeddings. May take some minutes...")
    vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = index_name)
    print("Pinecone Updated Done")
    print(index.describe_index_stats())

def SummarizeDoc():
    global vectordb_p
    # pinecone.Index(index_name).delete(delete_all=True, namespace='')
    # collection = vectordb_p.get()
    # split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
    # split_docs = process_documents()
    split_docs = process_documents_2()
    tt = len(split_docs)
    print(split_docs[tt-1])
    sum_text=""
    try:
        sum_chain = load_summarize_chain(llm, chain_type='refine', verbose=True)
        sum_text = sum_chain.run(split_docs)
        return sum_text
    except Exception as e:
        print("SummarizeDoc error:", e)
        
    # sum_text = "test sum"
    



class DB_Search(BaseTool):
    name = "Vector_Database_Search"
    description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
    def _run(self, query: str) -> str:
        response, source = QAQuery_p(query)
        # response = "test db_search feedback"
        return response

    def _arun(self, query: str):
        raise NotImplementedError("N/A")

class DB_Search2(BaseTool):
    name = "Vector Database Search"
    description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
    def _run(self, query: str) -> str:
        response, source = QAQuery_p(query)
        # response = "test db_search feedback"
        return response

    def _arun(self, query: str):
        raise NotImplementedError("N/A")


def Text2Sound(text):

    speech_config = speechsdk.SpeechConfig(subscription=os.environ['SPEECH_KEY'], region=os.environ['SPEECH_REGION'])
    audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
    speech_config.speech_synthesis_voice_name='en-US-JennyNeural'
    # speech_synthesizer = ""
    speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
    speech_synthesis_result = speech_synthesizer.speak_text_async(text).get()
    # if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
    #     print("Speech synthesized for text [{}]".format(text))
    # elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled:
    #     cancellation_details = speech_synthesis_result.cancellation_details
    #     print("Speech synthesis canceled: {}".format(cancellation_details.reason))
    #     if cancellation_details.reason == speechsdk.CancellationReason.Error:
    #         if cancellation_details.error_details:
    #             print("Error details: {}".format(cancellation_details.error_details))
    #             print("Did you set the speech resource key and region values?")
    print("test")
    return speech_synthesis_result
    pass



def get_azure_access_token():
    azure_key = os.environ.get("SPEECH_KEY")
    try:
        response = requests.post(
            "https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken",
            headers={
                "Ocp-Apim-Subscription-Key": azure_key
            }
        )
        response.raise_for_status()
    except requests.exceptions.RequestException as e:
        print(f"Error: {e}")
        return None
    # print (response.text)
    return response.text


def text_to_speech_2(text):
    global Audio_output
    access_token = get_azure_access_token()
    voice_name='en-US-AriaNeural'
    if not access_token:
        return None

    try:
        response = requests.post(
            "https://eastus.tts.speech.microsoft.com/cognitiveservices/v1",
            headers={
                "Authorization": f"Bearer {access_token}",
                "Content-Type": "application/ssml+xml",
                "X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm",
                "User-Agent": "TextToSpeechApp",
            },
            data=f"""
                <speak version='1.0' xml:lang='en-US'>
                <voice name='{voice_name}'>
                    {text}
                </voice>
                </speak>
            """,
        )
        response.raise_for_status()
        timestr = time.strftime("%Y%m%d-%H%M%S")
        with open('sample-' + timestr + '.wav', 'wb') as audio:
                audio.write(response.content)
        print ("File Name  ", audio.name)
        # print (audio)
        Audio_output.append(audio.name)
        # return audio.name
        return audio
    except requests.exceptions.RequestException as e:
        print(f"Error: {e}")
        return None

def speech_to_text(Filename_Audio_input_single):
    print("Start speech to text ....")
    access_token = get_azure_access_token()
    
    if not access_token:
        return None

    try:
        endpoint = f"https://eastus.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1?language=en-US"
        headers={
            "Authorization": f"Bearer {access_token}",
            "Content-Type": "audio/wav",}

        response = requests.post(endpoint, headers=headers, data=open(Filename_Audio_input_single, "rb"))
        print("Speech to Text Raw: ", response.text)
        text_from_audio = response.text.split('DisplayText":"')[1].split('"}')[0]
        # text_from_audio = response.text('DisplayText')
        print("Speech to Text: ", text_from_audio)
        return text_from_audio
    except requests.exceptions.RequestException as e:
        print(f"Error speech_to_text: {e}")
        return None


Text2Sound_tool = Tool(
    name = "Text_To_Sound_REST_API",
    # func = Text2Sound,
    func = text_to_speech_2,
    description = "Useful when you need to convert text into sound file."
)

Text2Sound_tool2 = Tool(
    name = "Text To Sound REST API",
    # func = Text2Sound,
    func = text_to_speech_2,
    description = "Useful when you need to convert text into sound file."
)


Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()

wikipedia_tool = Tool(
    name = "Wikipedia_Search",
    func = Wikipedia.run,
    description = "Useful to search a topic, country or person when there is no availble information in vector database"
)

duckduckgo_tool = Tool(
    name = "Duckduckgo_Internet_Search",
    func = Netsearch.run,
    description = "Useful to search information in internet when it is not available in other tools"    
)

python_tool = Tool(
    name = "Python_REPL",
    func = Python_REPL.run,
    description = "Useful when you need python to answer questions. You should input python code."    
)

wikipedia_tool2 = Tool(
    name = "Wikipedia Search",
    func = Wikipedia.run,
    description = "Useful to search a topic, country or person when there is no availble information in vector database"
)

duckduckgo_tool2 = Tool(
    name = "Duckduckgo Internet Search",
    func = Netsearch.run,
    description = "Useful to search information in internet when it is not available in other tools"    
)

python_tool2 = Tool(
    name = "Python REPL",
    func = Python_REPL.run,
    description = "Useful when you need python to answer questions. You should input python code."    
)



# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]


os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_BASE"] = os.environ["OPENAI_API_BASE"]
os.environ["OPENAI_API_VERSION"] = os.environ["OPENAI_API_VERSION"]
# os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.environ["username1"]
password = os.environ["password"]
SysLock = os.environ["SysLock"] # 0=unlock 1=lock

# deployment_name="Chattester"

chat = AzureChatOpenAI(
    deployment_name=os.environ["deployment_name"],
    temperature=0,
)


llm = chat

# llm = GPTfake

llm_math = LLMMathChain.from_llm(llm)

math_tool = Tool(
    name ='Calculator',
    func = llm_math.run,
    description ='Useful for when you need to answer questions about math.'
)


# openai
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool, Text2Sound_tool]

tools2 = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool, Text2Sound_tool2]

# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)

# Openai embedding
embeddings_openai = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)

# huggingface embedding model
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'

# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
device = 'cpu'
embeddings_miniLM = HuggingFaceEmbeddings(
    model_name=embed_model_id,
    model_kwargs={'device': device},
)

# embeddings = embeddings_openai
embeddings = embeddings_miniLM


# embeddings = OpenAIEmbeddings(deployment="model_embedding_2", chunk_size=15)

pinecone.init(      
	api_key = os.environ["pinecone_api_key"],      
	# environment='asia-southeast1-gcp-free',
    environment='us-west4-gcp-free',
    # openapi_config=openapi_config      
)
# index_name = 'stla-baby'
global index_name
index_name = 'stla-back' 
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
print(pinecone.whoami())
print(index.describe_index_stats())

"""
Answer the following questions as best you can with details. 
You can always use tools to convert text to sound.
You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:

Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math.
Text To Sound: Useful when you need to convert text into sound file."""


PREFIX = """Answer the following questions as best you can with detail information and explanation. 
You can always use tools to convert text to sound.
You must always check vector database first and try to answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:"""

FORMAT_INSTRUCTIONS = """Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""

SUFFIX = """Begin!

Request: {input}
Thought:{agent_scratchpad}"""

SUFFIX2 = """Begin!

{chat_history}
Question: {input}
Thought:{agent_scratchpad}"""


prompt = ZeroShotAgent.create_prompt(
    tools, 
    prefix=PREFIX,
    suffix=SUFFIX,
    # suffix=SUFFIX2,
    format_instructions=FORMAT_INSTRUCTIONS, 
    input_variables=["input", "agent_scratchpad"]
    # input_variables=["input", "chat_history", "agent_scratchpad"]
)

prompthead_openai_1 = \
"""
You are a helpful AI assistant. Your mission is to answer the following request as best as you can with detail information and explanation. 
You must always check vector database first and try to answer the request based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
"""
prompthead_openai_OR = \
"""
You are a helpful AI assistant.
"""
prompthead_openai = \
"""
You are a helpful AI assistant to answer the following questions as best as you can with detail information.
You must always search information in vector database first and answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other method.
"""


prompt_openai = OpenAIMultiFunctionsAgent.create_prompt(
    system_message = SystemMessage(
            content = prompthead_openai),
    # extra_prompt_messages = [MessagesPlaceholder(variable_name="memory")],
)

input_variables=["input", "chat_history", "agent_scratchpad"]


agent_ZEROSHOT_REACT = initialize_agent(tools2, llm, 
                        #  agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
                         agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
                         verbose = True,
                         handle_parsing_errors = True,
                         max_iterations = int(os.environ["max_iterations"]),
                         early_stopping_method="generate",
                         agent_kwargs={
                            'prefix': PREFIX,
                            'format_instructions': FORMAT_INSTRUCTIONS,
                            'suffix': SUFFIX,
                            # 'input_variables': input_variables,
                         },
                        #  input_variables = input_variables,
                        #  agent_kwargs={
                        #     'prompt': prompt,
                        #  }
                         
                        )

agent_ZEROSHOT_REACT_2 = initialize_agent(tools2, GPTfake, 
                        #  agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
                         agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
                         verbose = True,
                         handle_parsing_errors = True,
                         max_iterations = int(os.environ["max_iterations"]),
                         early_stopping_method="generate",
                         agent_kwargs={
                            'prefix': PREFIX,
                            'format_instructions': FORMAT_INSTRUCTIONS,
                            'suffix': SUFFIX,
                            # 'input_variables': input_variables,
                         },
                        #  input_variables = input_variables,
                        #  agent_kwargs={
                        #     'prompt': prompt,
                        #  }
                         
                        )


llm_chain = LLMChain(llm=llm, prompt=prompt)
llm_chain_2 = LLMChain(llm=GPTfake, prompt=prompt)

print("Test LLM Chain", llm_chain_2({'agent_scratchpad':None, 'input':"what is PDP?"}))

# llm_chain_openai = LLMChain(llm=llm, prompt=prompt_openai, verbose=True)

agent_core = ZeroShotAgent(llm_chain=llm_chain, tools=tools2, verbose=True)
agent_core_2 = ZeroShotAgent(llm_chain=llm_chain_2, tools=tools2, verbose=True)

agent_core_openai = OpenAIMultiFunctionsAgent(llm=llm, tools=tools, prompt=prompt_openai, verbose=True)

agent_ZEROSHOT_AGENT = AgentExecutor.from_agent_and_tools(
    agent=agent_core, 
    tools=tools2, 
    verbose=True, 
    # memory=memory,
    handle_parsing_errors = True,
    max_iterations = int(os.environ["max_iterations"]),
    early_stopping_method="generate",
    )

agent_ZEROSHOT_AGENT_2 = AgentExecutor.from_agent_and_tools(
    agent=agent_core_2, 
    tools=tools2, 
    verbose=True, 
    # memory=memory,
    handle_parsing_errors = True,
    max_iterations = int(os.environ["max_iterations"]),
    early_stopping_method="generate",
    )


agent_OPENAI_MULTI = AgentExecutor.from_agent_and_tools(
    agent=agent_core_openai, 
    tools=tools, 
    verbose=True, 
    # memory=memory_openai,
    handle_parsing_errors = True,
    max_iterations = int(os.environ["max_iterations"]),
    early_stopping_method="generate",
    )

# agent.max_execution_time = int(os.getenv("max_iterations"))
# agent.handle_parsing_errors = True
# agent.early_stopping_method = "generate"

def SetAgent(Choice):
    global agent
    if Choice =='Zero Short Agent':
        agent = agent_ZEROSHOT_AGENT
        print("Set to:", Choice)
    elif Choice =='Zero Short React':
        agent = agent_ZEROSHOT_REACT
        print("Set to:", Choice)
    elif Choice =='OpenAI Multi':
        agent = agent_OPENAI_MULTI
        print("Set to:", Choice)
    elif Choice =='Zero Short React 2':
        agent = agent_ZEROSHOT_REACT_2
        print("Set to:", Choice)
    elif Choice =='Zero Short Agent 2':
        agent = agent_ZEROSHOT_AGENT_2
        print("Set to:", Choice)
    elif Choice == "None":
        agent = None
        print("Set to:", Choice)

global agent
Choice = os.environ["agent_type"]
SetAgent(Choice)


# agent = agent_ZEROSHOT_AGENT


# print(agent.agent.llm_chain.prompt.template)
# print(agent.agent.llm_chain.prompt)

global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)

# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')



# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history1):
    # response = "I don't know"
    # print(message)
    response, source = QAQuery_p(message)
    time.sleep(0.3)
    print(history1)
    yield response
    # yield history

def chathmi2(message, history):
    global Audio_output
    try:
        output = agent.run(message)
        time.sleep(0.3)
        response = output
        yield response
        print ("response of chatbot:", response)
        print ("\n")
        # real_content = response[-1:]
        # print("real_content", real_content)
        try:
            temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
            file_name = temp.split(")")[0]
            print("file_name:", file_name)
            dis_audio = []
            dis_audio.append(file_name)
            # yield dis_audio
            yield dis_audio
        except:
            pass
        if len(Audio_output) > 0:
            # time.sleep(0.5)        
            # yield Audio_output
            Audio_output = []
        
        print("History: ", history)
        print("-" * 20)
        print("-" * 20)
    except Exception as e:
        print("error:", e)

    # yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))

def func_upload_file(files, chat_history2):
    global file_list_loaded
    file_list_loaded = []
    print(files)
    for unit in files:
        file_list_loaded.append(unit.name)
    # file_list_loaded = files
    print(file_list_loaded)
    # print(chat_history)
    # test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
    
    # chat_history.append(test_msg)
    for file in files:
        chat_history2 = chat_history2 + [((file.name,), None)]
    yield chat_history2
    if os.environ["SYS_Upload_Enable"] == "1":
        UpdateDb()
    test_msg = ["Request Upload File into DB", "Operation Finished"]
    chat_history2.append(test_msg)
    yield chat_history2


def Summary_upload_file(files, chat_history2):
    global file_list_loaded
    file_list_loaded = []
    for unit in files:
        file_list_loaded.append(unit.name)
    # file_list_loaded = files
    print(file_list_loaded)
    # print(chat_history)
    # test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
    
    # chat_history.append(test_msg)
    for file in files:
        chat_history2 = chat_history2 + [((file.name,), None)]
    yield chat_history2
    if os.environ["SYS_Upload_Enable"] == "1":
        sumtext = SummarizeDoc()
    test_msg = [None, sumtext]
    chat_history2.append(test_msg)
    yield chat_history2


class Logger:
    def __init__(self, filename):
        self.terminal = sys.stdout
        self.log = open(filename, "w")

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)
        
    def flush(self):
        self.terminal.flush()
        self.log.flush()
        
    def isatty(self):
        return False    

sys.stdout = Logger("output.log")

def read_logs():
    sys.stdout.flush()
    with open("output.log", "r") as f:
        return f.read()




global record
record = []

def LinkElement(chatbot_history):
    '''
    Link chatbot display output with other UI
    '''
    global record
    if record != chatbot_history:
        last_response = chatbot_history[-1:][1]
        print("last response:", last_response)
        record = chatbot_history
        print(chatbot_history)
        # print("link element test")
    else:
        print("From linkelement: ", chatbot_history)
        pass

def chathmi3(message, history2):
    global last_request
    global Filename_Chatbot
    global agent
    print("Input Message:", message)
    last_request = message
    history2 = history2 + [(message, None)]
    yield ["", history2]
    try:
        if agent is not None:
            response = agent.run(message)
        elif agent is None:
            response = asyncio.run(start_playwright(message))
        time.sleep(0.1)
        history2 = history2 + [(None, response)]
        yield ["", history2]
        print ("response of chatbot:", response)
        # real_content = response[-1:]
        # print("real_content", real_content)
        try:
            temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
            file_name = temp.split(")")[0]
            print("file_name:", file_name)
            history2 = history2 + [(None, (file_name,))]
            Filename_Chatbot = file_name
            yield ["", history2]
        except:
            print("No need to add file in chatbot")        

    except Exception as e:
        print("chathmi3 error:", e)  
     
    # history = history + [(message, None)]
    
    print("History2: ", history2)
    print("-" * 20)
    print("-" * 20)

def chathmi4(message, history2):
    global last_request
    global Filename_Chatbot
    global agent
    print("Input Message:", message)
    
    last_request = message
    history2 = history2 + [(message, None)]
    yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
    # yield ["", history2, "SUBMIT", "STOP"]
    try:
        if agent is not None:
            response = agent.run(message)
        elif agent is None:
            response = asyncio.run(start_playwright(message))

        time.sleep(0.1)
        history2 = history2 + [(None, response)]
        yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
        # yield ["", history2, None, None]
        print ("response of chatbot:", response)
        # real_content = response[-1:]
        # print("real_content", real_content)
        try:
            temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
            file_name = temp.split(")")[0]
            print("file_name:", file_name)
            history2 = history2 + [(None, (file_name,))]
            Filename_Chatbot = file_name    
            yield ["", history2, "SUBMIT", "STOP"]        
        except:
            print("No need to add file in chatbot")        

    except Exception as e:
        print("chathmi4 error:", e)

    # history = history + [(message, None)]
        
    print("History2: ", history2)
    print("-" * 20)
    print("-" * 20)

def chatremote(message, history2):
    global last_request
    global Filename_Chatbot
    print("Input Message:", message)
    last_request = message
    history2 = history2 + [(message, None)]
    yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
    # yield ["", history2, "SUBMIT", "STOP"]
    try:
        # response = agent.run(message)
        response = asyncio.run(start_playwright(message))
        time.sleep(0.1)
        history2 = history2 + [(None, response)]
        yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
        # yield ["", history2, None, None]
        print ("response of chatbot remote:", response)
        # real_content = response[-1:]
        # print("real_content", real_content)
        try:
            temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
            file_name = temp.split(")")[0]
            print("file_name:", file_name)
            history2 = history2 + [(None, (file_name,))]
            Filename_Chatbot = file_name
            yield ["", history2, "SUBMIT", "STOP"]
        except:
            print("No need to add file in chatbot")        

    except Exception as e:
        print("chathmi remote error:", e)

    # history = history + [(message, None)]
    
    print("History2: ", history2)
    print("-" * 20)
    print("-" * 20)
    
def fake(message, history4):
    pass


def clearall():
    # global memory_openai
    # global memory
    # memory_openai.clear()
    # memory.clear()
    global Filename_Chatbot
    Filename_Chatbot = []
    return [[], gr.update(visible=True), gr.update(visible=False), []]

def retry(history3):
    global last_request
    print("last_request", last_request)
    message = last_request
    history3 = history3 + [(message, None)]
    yield history3
    
    try:
        response = agent.run(message)
        time.sleep(0.1)
        history3 = history3 + [(None, response)]
        print ("response of chatbot:", response)
        yield history3
        
        # real_content = response[-1:]
        # print("real_content", real_content)
        try:
            temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
            file_name = temp.split(")")[0]
            print("file_name:", file_name)
            history3 = history3 + [(None, (file_name,))]
            yield history3
        except:
            print("No need to add file in chatbot")        

    except Exception as e:
        print("chathmi3 error:", e)      
    # yield chathmi3(last_request, chatbot_history)

def display_input(message, history2):
    global last_request
    print("Input Message:", message)
    last_request = message
    history2 = history2 + [(message, None)]
    return history2
    
def Inference_Agent(history_inf):
    global last_request
    message = last_request
    try:
        response = agent.run(message)
        time.sleep(0.1)
        history_inf = history_inf + [(None, response)]
        return ["",history_inf]   
    except Exception as e:
        print("error:", e)

def ClearText():
    return ""

def playsound1():
    global Filename_Chatbot
    print("playsound1: ", Filename_Chatbot)
    try:
        if Filename_Chatbot.split(".")[1] == 'wav':
            soundfilename = Filename_Chatbot
            print("soundfilename:", soundfilename)
            # return None
            # Filename_Chatbot = ""
            return gr.update(value = soundfilename)
            # return soundfilename
            # yield soundfilename
    except Exception as e:
        print("playsound error:", e)
        return None

def playsound2():
    global Filename_Chatbot
    try:
        if Filename_Chatbot.split(".")[1] == 'wav':
            soundfilename = Filename_Chatbot
            print("soundfilename:", soundfilename)
            # return None
            # playsound(soundfilename)
            mixer.init()
            mixer.music.load(soundfilename)
            mixer.music.play()
    except Exception as e:
        print("playsound2 error:", e)
        return None
    
def HMI_Runing():
    return [gr.update(visible=False), gr.update(visible=True)]

def HMI_Wait():
    return [gr.update(visible=True), gr.update(visible=False)]


def ClearAudio():
    print("clear audio ...")
    
    return None

def Text2Sound_HMI():
    global last_answer
    global Filename_Chatbot
    global Audio_output
    print("Last answer in Text2Sound_HMI", last_answer)
    text_to_speech_2(last_answer)
    Filename_Chatbot = Audio_output[-1]
    print("Filename_Chatbot in Text2Sound_HMI", Filename_Chatbot)
    # try:
    #     if Filename_Chatbot.split(".")[1] == 'wav':
    #         soundfilename = Filename_Chatbot
    #         print("soundfilename:", soundfilename)
    #         # return None
    #         return gr.update(value = soundfilename)
    #         # return soundfilename
    #         # yield soundfilename
    # except Exception as e:
    #     print("playsound error:", e)
    #     return None

global last_answer
last_answer = ""

def SingleTalk(WavFile, history5):
    global last_answer
    global Filename_Chatbot
    ConvertText = speech_to_text(WavFile)
    history5 = history5 + [(ConvertText, None)]
    yield [None, None, history5]
    message = ConvertText
    history2 = history5
    try:
        response = agent.run(message)
        time.sleep(0.1)
        last_answer = response
        history2 = history2 + [(None, response)]
        yield [None, None, history2]
        # yield ["", history2, None, None]
        print ("response of chatbot:", response)
        # real_content = response[-1:]
        # print("real_content", real_content)
        try:
            temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
            file_name = temp.split(")")[0]
            print("file_name:", file_name)
            history2 = history2 + [(None, (file_name,))]
            Filename_Chatbot = file_name
            yield [None, None, history2]
        except:
            print("No need to add file in chatbot")        

    except Exception as e:
        print("chathmi3 SingleTalk error:", e)

    # history = history + [(message, None)]
    print("History2 in Simple Talk: ", history2)
    print("-" * 20)
    print("-" * 20)




with gr.Blocks() as demo:
    # gr.Markdown("Start typing below and then click **SUBMIT** to see the output.")
    # main = gr.ChatInterface(
    #     fake,
    #     title="STLA BABY - YOUR FRIENDLY GUIDE",
    #     description= "v0.3: Powered by MECH Core Team",
    # )
    # main.textbox.submit(chathmi3, [main.textbox, main.chatbot], [main.textbox, main.chatbot])

    with gr.Column() as main2:
        title = gr.Markdown("""# <center> STLA BABY - YOUR FRIENDLY GUIDE
                            <center> v0.6: Powered by MECH Core Team - GPT4 REMOTE MODE"""),
        chatbot = gr.Chatbot()
        with gr.Row():
            inputtext = gr.Textbox(
                scale= 4, 
                label="",
                placeholder = "Input Your Question",
                show_label = False,
                )
            submit_button = gr.Button("SUBMIT", variant="primary", visible=True)
            stop_button = gr.Button("STOP", variant='stop', visible=False)

        with gr.Row():

            agentchoice = gr.Dropdown(
                choices=['Zero Short Agent','Zero Short React','OpenAI Multi','Zero Short React 2','Zero Short Agent 2','None'],
                label="SELECT AI AGENT",
                scale= 2,
                show_label = True,
                value="OpenAI Multi",
            )
            voice_input = gr.Audio(
                source="microphone", 
                type="filepath", 
                scale= 1,
                label= "INPUT",
                )
            voice_output = gr.Audio(
                source="microphone", 
                type="filepath", 
                scale= 1, 
                interactive=False,
                autoplay= True,
                label= "OUTPUT",
                )
            upload_button = gr.UploadButton("✡️ INGEST DB", file_count="multiple", scale= 0, variant="secondary")
            summary_file_button = gr.UploadButton("📁 SUM DOC", file_count="multiple", scale= 0, variant="secondary")
            retry_button = gr.Button("RETRY")
            clear_button = gr.Button("CLEAR")
        with gr.Accordion(
            label = "LOGS",
            open = False,
            ):
            # logs = gr.Textbox()
            frash_logs = gr.Button("Update Logs ...")
            logs = gr.Textbox(max_lines = 25)
    
    """
    GUI Func
    """

    # upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)
    clear_button.click(clearall, None, [chatbot, submit_button, stop_button], voice_output)
    retry_button.click(retry, chatbot, chatbot).success(playsound1, None, voice_output).\
        success(HMI_Wait, None, [submit_button, stop_button])#.\
        # success(ClearAudio, None, voice_output)
    # inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
    #     then(playsound, None, voice_output)
    # inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
    #     then(HMI_Runing, None, [submit_button, stop_button]).\
    #     then(playsound, None, voice_output).\
    #     then(HMI_Wait, None, [submit_button, stop_button])
    # inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button])
    ''' open ai | new'''
    inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
        success(playsound1, None, voice_output)#.\
        # success(ClearAudio, None, voice_output)

    ''' Test '''
    # inf4 = inputtext.submit(chatremote, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
    #     success(playsound1, None, voice_output)

    inf3 = submit_button.click(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
        success(HMI_Runing, None, [submit_button, stop_button]).\
        success(playsound1, None, voice_output).\
        success(HMI_Wait, None, [submit_button, stop_button])#.\
        # success(ClearAudio, None, voice_output)
    
    # inf2 = inputtext.submit(display_input, [inputtext, chatbot], chatbot).\
    #     then(Inference_Agent, chatbot, [inputtext, chatbot])
    stop_button.click(read_logs, None, logs, cancels=[inf4,inf3]).\
        then(HMI_Wait, None, [submit_button, stop_button])
    # stop_button.click(read_logs, None, logs, cancels=[inf2])
    upload_button.upload(func_upload_file, [upload_button, chatbot], chatbot)
    summary_file_button.upload(Summary_upload_file, [summary_file_button, chatbot], chatbot)
    agentchoice.change(SetAgent, agentchoice, None)
    frash_logs.click(read_logs, None, logs)
    voice_input.stop_recording(SingleTalk, [voice_input, chatbot], [voice_input, voice_output, chatbot]).\
        success(Text2Sound_HMI,None,None).\
        success(playsound1, None, voice_output) #.\
        # success(HMI_Wait, None, [submit_button, stop_button]).\
        # success(ClearAudio, None, voice_output)
    # voice_output.end(ClearAudio, None, voice_output)
    # def clear_voice():
    #     print("clear audio ...")
    #     voice_output.clear()

    # voice_output.play(clear_voice, None, None)

    # demo.load(read_logs, None, logs, every=1)


# demo = gr.Interface(
#     chathmi,
#     ["text", "state"],
#     [chatbot, "state"],
#     allow_flagging="never",
# )

def CreatDb_P():
    global vectordb_p
    index_name = 'stla-baby'
    loader = DirectoryLoader('./documents', glob='**/*.txt')
    documents = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
    split_docs = text_splitter.split_documents(documents)
    print(split_docs)
    pinecone.Index(index_name).delete(delete_all=True, namespace='')
    vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
    print("Pinecone Updated Done")
    print(index.describe_index_stats())

def QAQuery_p(question: str):
    global vectordb_p
    # vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
    retriever = vectordb_p.as_retriever()
    retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
    # retriever.search_kwargs['fetch_k'] = 100

    qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", 
                                     retriever=retriever, return_source_documents = True,
                                     verbose = True)
    # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
    # res = qa.run(question)
    res = qa({"query": question})
    
    print("-" * 20)
    # print("Question:", question)
    # print("Answer:", res)
    # print("Answer:", res['result'])
    print("-" * 20)
    # print("Source:", res['source_documents'])
    response = res['result']
    # response = res['source_documents']
    source = res['source_documents']
    return response, source

# def CreatDb():
#     '''
#     Funtion to creat chromadb DB based on with all docs
#     '''
#     global vectordb
#     loader = DirectoryLoader('./documents', glob='**/*.txt')
#     documents = loader.load()
#     text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
#     split_docs = text_splitter.split_documents(documents)
#     print(split_docs)
#     vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
#     vectordb.persist()

def QAQuery(question: str):
    global vectordb
    # vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
    retriever = vectordb.as_retriever()
    retriever.search_kwargs['k'] = 3
    # retriever.search_kwargs['fetch_k'] = 100

    qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
    # qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
    # res = qa.run(question)
    res = qa({"query": question})
    
    print("-" * 20)
    print("Question:", question)
    # print("Answer:", res)
    print("Answer:", res['result'])
    print("-" * 20)
    print("Source:", res['source_documents'])
    response = res['result']
    return response

# Used to complete content
def completeText(Text): 
    deployment_id="Chattester"
    prompt = Text
    completion = openai.Completion.create(deployment_id=deployment_id,
                                        prompt=prompt, temperature=0)                              
    print(f"{prompt}{completion['choices'][0]['text']}.")

# Used to chat
def chatText(Text): 
    deployment_id="Chattester"
    conversation = [{"role": "system", "content": "You are a helpful assistant."}]
    user_input = Text
    conversation.append({"role": "user", "content": user_input})
    response = openai.ChatCompletion.create(messages=conversation,
        deployment_id="Chattester")
    print("\n" + response["choices"][0]["message"]["content"] + "\n")

if __name__ == '__main__':
    # chatText("what is AI?")
    # CreatDb()
    # QAQuery("what is COFOR ?")
    # CreatDb_P()
    # QAQuery_p("what is GST ?")
    # question = "what is PDP?"
    # output = asyncio.run(start_playwright(question))

    if SysLock == "1":
        demo.queue().launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
    else:
        demo.queue().launch(server_name="0.0.0.0", server_port=7860)
    pass