Spaces:
Runtime error
Runtime error
File size: 21,687 Bytes
5edac6d d3ca070 9ed883a d90b6b8 5edac6d f62a7d4 d3ca070 5edac6d 73f1d5f 5edac6d a331c7b 5edac6d 66d2fc7 0ded0b0 66d2fc7 5edac6d 73f1d5f 5edac6d 73f1d5f 5edac6d 9ed883a f62a7d4 ae6b6a0 f62a7d4 ae6b6a0 9ed883a d90b6b8 8eca13f d90b6b8 93d657b d90b6b8 0952397 a331c7b d90b6b8 0952397 d90b6b8 454ef36 96a8500 1212925 96a8500 d90b6b8 454ef36 9ed883a 454ef36 9ed883a 5edac6d 7206363 5edac6d 7206363 5edac6d 9ed883a 5edac6d 2e6d65c 5edac6d 9ed883a 5edac6d 2e6d65c 0d29a46 45c3baa 0d29a46 2e6d65c 5edac6d d3ca070 5edac6d 45c3baa ac9ad2c 5edac6d d3ca070 5edac6d a331c7b 5edac6d 881af9d 0d29a46 881af9d 5edac6d 73f1d5f c184879 73f1d5f 66d2fc7 adce112 66d2fc7 adce112 66d2fc7 5edac6d 66d2fc7 5edac6d 835be01 3ec9647 835be01 881af9d 5edac6d 5e58f51 5edac6d 5e58f51 5edac6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# from typing import Any, Coroutine
import openai
import os
from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
from langchain.memory import ConversationBufferMemory
import azure.cognitiveservices.speech as speechsdk
import requests
import pinecone
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time
import glob
from typing import List
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
memory = ConversationBufferMemory(memory_key="chat_history")
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
source_directory = 'Upload Files'
global file_list_loaded
file_list_loaded = ''
chunk_size = 500
chunk_overlap = 300
global Audio_output
Audio_output = []
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
# all_files = []
# for ext in LOADER_MAPPING:
# all_files.extend(
# glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
# )
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for file in filtered_files:
docs = load_single_document(file)
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def UpdateDb():
global vectordb_p
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_2()
tt = len(split_docs)
print(split_docs[tt-1])
print(f"Creating embeddings. May take some minutes...")
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
class DB_Search(BaseTool):
name = "Vector Database Search"
description = "This is the internal database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
def Text2Sound(text):
speech_config = speechsdk.SpeechConfig(subscription=os.getenv('SPEECH_KEY'), region=os.getenv('SPEECH_REGION'))
audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
speech_config.speech_synthesis_voice_name='en-US-JennyNeural'
# speech_synthesizer = ""
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(text).get()
# if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# print("Speech synthesized for text [{}]".format(text))
# elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled:
# cancellation_details = speech_synthesis_result.cancellation_details
# print("Speech synthesis canceled: {}".format(cancellation_details.reason))
# if cancellation_details.reason == speechsdk.CancellationReason.Error:
# if cancellation_details.error_details:
# print("Error details: {}".format(cancellation_details.error_details))
# print("Did you set the speech resource key and region values?")
print("test")
return speech_synthesis_result
pass
def get_azure_access_token():
azure_key = os.environ.get("SPEECH_KEY")
try:
response = requests.post(
"https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken",
headers={
"Ocp-Apim-Subscription-Key": azure_key
}
)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
# print (response.text)
return response.text
def text_to_speech_2(text):
global Audio_output
access_token = get_azure_access_token()
voice_name='en-US-AriaNeural'
if not access_token:
return None
try:
response = requests.post(
"https://eastus.tts.speech.microsoft.com/cognitiveservices/v1",
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/ssml+xml",
"X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm",
"User-Agent": "TextToSpeechApp",
},
data=f"""
<speak version='1.0' xml:lang='en-US'>
<voice name='{voice_name}'>
{text}
</voice>
</speak>
""",
)
response.raise_for_status()
timestr = time.strftime("%Y%m%d-%H%M")
with open('sample-' + timestr + '.wav', 'wb') as audio:
audio.write(response.content)
print ("File Name ", audio.name)
# print (audio)
Audio_output.append(audio.name)
return audio.name
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
Text2Sound_tool = Tool(
name = "Text To Sound REST API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()
wikipedia_tool = Tool(
name = "Wikipedia Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool = Tool(
name = "Duckduckgo Internet Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool = Tool(
name = "Python REPL",
func = Python_REPL.run,
description = "Useful when you need python to answer questions. You should input python code."
)
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.getenv("username")
password = os.getenv("password")
SysLock = os.getenv("SysLock") # 0=unlock 1=lock
# deployment_name="Chattester"
chat = AzureChatOpenAI(
deployment_name=os.getenv("deployment_name"),
temperature=0,
)
llm = chat
llm_math = LLMMathChain.from_llm(llm)
math_tool = Tool(
name ='Calculator',
func = llm_math.run,
description ='Useful for when you need to answer questions about math.'
)
tools = [DB_Search(), duckduckgo_tool, wikipedia_tool, python_tool, math_tool, Text2Sound_tool]
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
pinecone.init(
api_key = os.getenv("pinecone_api_key"),
environment='asia-southeast1-gcp-free',
# openapi_config=openapi_config
)
index_name = 'stla-baby'
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
# print(pinecone.whoami())
# print(index.describe_index_stats())
"""
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math.
Text To Sound: Useful when you need to convert text into sound file."""
PREFIX = """Answer the following questions as best you can with details. You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You can always use tools to convert text to sound.
You have access to the following tools:"""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
SUFFIX = """Begin!
{chat_history}
Question: {input}
Thought:{agent_scratchpad}"""
agent = initialize_agent(tools, llm,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
agent_kwargs={
'prefix': PREFIX,
'format_instructions': FORMAT_INSTRUCTIONS,
'suffix': SUFFIX
}
)
print(agent.agent.llm_chain.prompt.template)
# print(agent.agent.llm_chain.prompt)
global vectordb
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history):
# response = "I don't know"
# print(message)
response, source = QAQuery_p(message)
time.sleep(0.3)
print(history)
yield response
# yield history
def chathmi2(message, history):
global Audio_output
try:
output = agent.run(message)
time.sleep(0.3)
response = output
yield response
if len(Audio_output) > 0:
# time.sleep(0.5)
yield Audio_output
Audio_output = []
print("History: ", history)
print("-" * 20)
print("-" * 20)
except Exception as e:
print("error:", e)
# yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
def func_upload_file(files, chat_history):
global file_list_loaded
file_list_loaded = []
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history = chat_history + [((file.name,), None)]
yield chat_history
if os.getenv("SYS_Upload_Enable") == "1":
UpdateDb()
test_msg = ["Request Upload File into DB", "Operation Finished"]
chat_history.append(test_msg)
yield chat_history
with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **SUBMIT** to see the output.")
main = gr.ChatInterface(
chathmi2,
title="STLA BABY - YOUR FRIENDLY GUIDE",
description= "v0.3: Powered by MECH Core Team",
)
upload_button = gr.UploadButton("Upload File", file_count="multiple")
upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)
# demo = gr.Interface(
# chathmi,
# ["text", "state"],
# [chatbot, "state"],
# allow_flagging="never",
# )
def CreatDb_P():
global vectordb_p
index_name = 'stla-baby'
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
pinecone.Index(index_name).delete(delete_all=True, namespace='')
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
def QAQuery_p(question: str):
global vectordb_p
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb_p.as_retriever()
retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k"))
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
# response = res['source_documents']
source = res['source_documents']
return response, source
def CreatDb():
global vectordb
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
vectordb.persist()
def QAQuery(question: str):
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever()
retriever.search_kwargs['k'] = 3
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
return response
# Used to complete content
def completeText(Text):
deployment_id="Chattester"
prompt = Text
completion = openai.Completion.create(deployment_id=deployment_id,
prompt=prompt, temperature=0)
print(f"{prompt}{completion['choices'][0]['text']}.")
# Used to chat
def chatText(Text):
deployment_id="Chattester"
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
user_input = Text
conversation.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(messages=conversation,
deployment_id="Chattester")
print("\n" + response["choices"][0]["message"]["content"] + "\n")
if __name__ == '__main__':
# chatText("what is AI?")
# CreatDb()
# QAQuery("what is COFOR ?")
# CreatDb_P()
# QAQuery_p("what is GST ?")
if SysLock == "1":
demo.queue().launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
else:
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
pass
|