STLA-BABY / app.py
OuroborosM's picture
correct setagent
2255560
raw
history blame
25.8 kB
# from typing import Any, Coroutine
import openai
import os
# from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
from langchain.memory import ConversationBufferMemory
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.agents import OpenAIMultiFunctionsAgent
from langchain.prompts import MessagesPlaceholder
from langchain.schema.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
SystemMessage,
)
from langchain import LLMChain
import azure.cognitiveservices.speech as speechsdk
import requests
import sys
import pinecone
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time
import glob
from typing import List
from multiprocessing import Pool
from tqdm import tqdm
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
memory = ConversationBufferMemory(memory_key="chat_history")
memory_openai = ConversationBufferMemory(memory_key="memory", return_messages=True)
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
# Add more mappings for other file extensions and loaders as needed
}
source_directory = 'Upload Files'
global file_list_loaded
file_list_loaded = ''
chunk_size = 500
chunk_overlap = 300
global Audio_output
Audio_output = []
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
# all_files = []
# for ext in LOADER_MAPPING:
# all_files.extend(
# glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
# )
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for file in filtered_files:
docs = load_single_document(file)
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def UpdateDb():
global vectordb_p
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_2()
tt = len(split_docs)
print(split_docs[tt-1])
print(f"Creating embeddings. May take some minutes...")
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
class DB_Search(BaseTool):
name = "Vector Database Search"
description = "This is the internal database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
def Text2Sound(text):
speech_config = speechsdk.SpeechConfig(subscription=os.getenv('SPEECH_KEY'), region=os.getenv('SPEECH_REGION'))
audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
speech_config.speech_synthesis_voice_name='en-US-JennyNeural'
# speech_synthesizer = ""
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(text).get()
# if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# print("Speech synthesized for text [{}]".format(text))
# elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled:
# cancellation_details = speech_synthesis_result.cancellation_details
# print("Speech synthesis canceled: {}".format(cancellation_details.reason))
# if cancellation_details.reason == speechsdk.CancellationReason.Error:
# if cancellation_details.error_details:
# print("Error details: {}".format(cancellation_details.error_details))
# print("Did you set the speech resource key and region values?")
print("test")
return speech_synthesis_result
pass
def get_azure_access_token():
azure_key = os.environ.get("SPEECH_KEY")
try:
response = requests.post(
"https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken",
headers={
"Ocp-Apim-Subscription-Key": azure_key
}
)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
# print (response.text)
return response.text
def text_to_speech_2(text):
global Audio_output
access_token = get_azure_access_token()
voice_name='en-US-AriaNeural'
if not access_token:
return None
try:
response = requests.post(
"https://eastus.tts.speech.microsoft.com/cognitiveservices/v1",
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/ssml+xml",
"X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm",
"User-Agent": "TextToSpeechApp",
},
data=f"""
<speak version='1.0' xml:lang='en-US'>
<voice name='{voice_name}'>
{text}
</voice>
</speak>
""",
)
response.raise_for_status()
timestr = time.strftime("%Y%m%d-%H%M")
with open('sample-' + timestr + '.wav', 'wb') as audio:
audio.write(response.content)
print ("File Name ", audio.name)
# print (audio)
Audio_output.append(audio.name)
return audio.name
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
Text2Sound_tool = Tool(
name = "Text To Sound REST API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()
wikipedia_tool = Tool(
name = "Wikipedia Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool = Tool(
name = "Duckduckgo Internet Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool = Tool(
name = "Python REPL",
func = Python_REPL.run,
description = "Useful when you need python to answer questions. You should input python code."
)
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE")
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.getenv("username")
password = os.getenv("password")
SysLock = os.getenv("SysLock") # 0=unlock 1=lock
# deployment_name="Chattester"
chat = AzureChatOpenAI(
deployment_name=os.getenv("deployment_name"),
temperature=0,
)
llm = chat
llm_math = LLMMathChain.from_llm(llm)
math_tool = Tool(
name ='Calculator',
func = llm_math.run,
description ='Useful for when you need to answer questions about math.'
)
tools = [DB_Search(), duckduckgo_tool, wikipedia_tool, python_tool, math_tool, Text2Sound_tool]
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
pinecone.init(
api_key = os.getenv("pinecone_api_key"),
environment='asia-southeast1-gcp-free',
# openapi_config=openapi_config
)
index_name = 'stla-baby'
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
# print(pinecone.whoami())
# print(index.describe_index_stats())
"""
Answer the following questions as best you can with details.
You can always use tools to convert text to sound.
You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math.
Text To Sound: Useful when you need to convert text into sound file."""
PREFIX = """Answer the following questions as best you can with detail information and explanation.
You can always use tools to convert text to sound.
You must always check vector database first and try to answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:"""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
SUFFIX = """Begin!
Request: {input}
Thought:{agent_scratchpad}"""
SUFFIX2 = """Begin!
{chat_history}
Question: {input}
Thought:{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=PREFIX,
suffix=SUFFIX2,
format_instructions=FORMAT_INSTRUCTIONS,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
prompt_openai = OpenAIMultiFunctionsAgent.create_prompt(
system_message = SystemMessage(
content="You are a helpful AI assistant."),
extra_prompt_messages = [MessagesPlaceholder(variable_name="memory")],
)
input_variables=["input", "chat_history", "agent_scratchpad"]
agent_ZEROSHOT_REACT = initialize_agent(tools, llm,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
agent_kwargs={
'prefix': PREFIX,
'format_instructions': FORMAT_INSTRUCTIONS,
'suffix': SUFFIX,
# 'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
# llm_chain_openai = LLMChain(llm=llm, prompt=prompt_openai, verbose=True)
agent_core = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_core_openai = OpenAIMultiFunctionsAgent(llm=llm, tools=tools, prompt=prompt_openai, verbose=True)
agent_ZEROSHOT_AGENT = AgentExecutor.from_agent_and_tools(
agent=agent_core,
tools=tools,
verbose=True,
memory=memory,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
)
agent_OPENAI_MULTI = AgentExecutor.from_agent_and_tools(
agent=agent_core_openai,
tools=tools,
verbose=True,
memory=memory_openai,
handle_parsing_errors = True,
max_iterations = int(os.getenv("max_iterations")),
early_stopping_method="generate",
)
# agent.max_execution_time = int(os.getenv("max_iterations"))
# agent.handle_parsing_errors = True
# agent.early_stopping_method = "generate"
global agent
agent = agent_ZEROSHOT_AGENT
print(agent.agent.llm_chain.prompt.template)
# print(agent.agent.llm_chain.prompt)
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history):
# response = "I don't know"
# print(message)
response, source = QAQuery_p(message)
time.sleep(0.3)
print(history)
yield response
# yield history
def chathmi2(message, history):
global Audio_output
try:
output = agent.run(message)
time.sleep(0.3)
response = output
yield response
if len(Audio_output) > 0:
# time.sleep(0.5)
yield Audio_output
Audio_output = []
print("History: ", history)
print("-" * 20)
print("-" * 20)
except Exception as e:
print("error:", e)
# yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
def func_upload_file(files, chat_history):
global file_list_loaded
file_list_loaded = []
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history = chat_history + [((file.name,), None)]
yield chat_history
if os.getenv("SYS_Upload_Enable") == "1":
UpdateDb()
test_msg = ["Request Upload File into DB", "Operation Finished"]
chat_history.append(test_msg)
yield chat_history
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
def SetAgent(Choice):
global agent
if Choice =='Zero Short Agent':
agent = agent_ZEROSHOT_AGENT
elif Choice =='Zero Short React':
agent = agent_ZEROSHOT_REACT
elif Choice =='OpenAI Multi':
agent = agent_OPENAI_MULTI
with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **SUBMIT** to see the output.")
main = gr.ChatInterface(
chathmi2,
title="STLA BABY - YOUR FRIENDLY GUIDE",
description= "v0.3: Powered by MECH Core Team",
)
with gr.Row():
upload_button = gr.UploadButton("Upload To DB", file_count="multiple", scale= 0)
upload_file_button = gr.UploadButton("Upload File", file_count="single", scale= 0)
agentchoice = gr.Dropdown(
value=['Zero Short Agent','Zero Short React','OpenAI Multi'],
)
voice_input = gr.Audio(source="microphone", type="filepath", scale= 1)
with gr.Accordion("LOGS"):
# logs = gr.Textbox()
logs = gr.Textbox()
upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)
demo.load(read_logs, None, logs, every=0.5)
agentchoice.change(SetAgent, agentchoice, None)
# demo = gr.Interface(
# chathmi,
# ["text", "state"],
# [chatbot, "state"],
# allow_flagging="never",
# )
def CreatDb_P():
global vectordb_p
index_name = 'stla-baby'
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
pinecone.Index(index_name).delete(delete_all=True, namespace='')
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
def QAQuery_p(question: str):
global vectordb_p
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb_p.as_retriever()
retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k"))
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
# response = res['source_documents']
source = res['source_documents']
return response, source
# def CreatDb():
# '''
# Funtion to creat chromadb DB based on with all docs
# '''
# global vectordb
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# vectordb.persist()
def QAQuery(question: str):
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever()
retriever.search_kwargs['k'] = 3
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
return response
# Used to complete content
def completeText(Text):
deployment_id="Chattester"
prompt = Text
completion = openai.Completion.create(deployment_id=deployment_id,
prompt=prompt, temperature=0)
print(f"{prompt}{completion['choices'][0]['text']}.")
# Used to chat
def chatText(Text):
deployment_id="Chattester"
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
user_input = Text
conversation.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(messages=conversation,
deployment_id="Chattester")
print("\n" + response["choices"][0]["message"]["content"] + "\n")
if __name__ == '__main__':
# chatText("what is AI?")
# CreatDb()
# QAQuery("what is COFOR ?")
# CreatDb_P()
# QAQuery_p("what is GST ?")
if SysLock == "1":
demo.queue().launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
else:
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
pass