Spaces:
Runtime error
Runtime error
# from typing import Any, Coroutine | |
import openai | |
import os | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.chat_models import AzureChatOpenAI | |
from langchain.document_loaders import DirectoryLoader | |
from langchain.chains import RetrievalQA | |
from langchain.vectorstores import Pinecone | |
from langchain.agents import initialize_agent | |
from langchain.agents import AgentType | |
from langchain.agents import Tool | |
# from langchain.agents import load_tools | |
from langchain.tools import BaseTool | |
from langchain.tools import DuckDuckGoSearchRun | |
from langchain.utilities import WikipediaAPIWrapper | |
from langchain.python import PythonREPL | |
from langchain.chains import LLMMathChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.agents import ZeroShotAgent | |
import azure.cognitiveservices.speech as speechsdk | |
import requests | |
import pinecone | |
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration | |
import gradio as gr | |
import time | |
import glob | |
from typing import List | |
from multiprocessing import Pool | |
from tqdm import tqdm | |
from langchain.document_loaders import ( | |
CSVLoader, | |
EverNoteLoader, | |
PyMuPDFLoader, | |
TextLoader, | |
UnstructuredEmailLoader, | |
UnstructuredEPubLoader, | |
UnstructuredHTMLLoader, | |
UnstructuredMarkdownLoader, | |
UnstructuredODTLoader, | |
UnstructuredPowerPointLoader, | |
UnstructuredWordDocumentLoader, | |
) | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.docstore.document import Document | |
memory = ConversationBufferMemory(memory_key="chat_history") | |
# Custom document loaders | |
class MyElmLoader(UnstructuredEmailLoader): | |
"""Wrapper to fallback to text/plain when default does not work""" | |
def load(self) -> List[Document]: | |
"""Wrapper adding fallback for elm without html""" | |
try: | |
try: | |
doc = UnstructuredEmailLoader.load(self) | |
except ValueError as e: | |
if 'text/html content not found in email' in str(e): | |
# Try plain text | |
self.unstructured_kwargs["content_source"]="text/plain" | |
doc = UnstructuredEmailLoader.load(self) | |
else: | |
raise | |
except Exception as e: | |
# Add file_path to exception message | |
raise type(e)(f"{self.file_path}: {e}") from e | |
return doc | |
LOADER_MAPPING = { | |
".csv": (CSVLoader, {}), | |
# ".docx": (Docx2txtLoader, {}), | |
".doc": (UnstructuredWordDocumentLoader, {}), | |
".docx": (UnstructuredWordDocumentLoader, {}), | |
".enex": (EverNoteLoader, {}), | |
".eml": (MyElmLoader, {}), | |
".epub": (UnstructuredEPubLoader, {}), | |
".html": (UnstructuredHTMLLoader, {}), | |
".md": (UnstructuredMarkdownLoader, {}), | |
".odt": (UnstructuredODTLoader, {}), | |
".pdf": (PyMuPDFLoader, {}), | |
".ppt": (UnstructuredPowerPointLoader, {}), | |
".pptx": (UnstructuredPowerPointLoader, {}), | |
".txt": (TextLoader, {"encoding": "utf8"}), | |
# Add more mappings for other file extensions and loaders as needed | |
} | |
source_directory = 'Upload Files' | |
global file_list_loaded | |
file_list_loaded = '' | |
chunk_size = 500 | |
chunk_overlap = 300 | |
global Audio_output | |
Audio_output = [] | |
def load_single_document(file_path: str) -> List[Document]: | |
ext = "." + file_path.rsplit(".", 1)[-1] | |
if ext in LOADER_MAPPING: | |
loader_class, loader_args = LOADER_MAPPING[ext] | |
loader = loader_class(file_path, **loader_args) | |
return loader.load() | |
raise ValueError(f"Unsupported file extension '{ext}'") | |
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]: | |
""" | |
Loads all documents from the source documents directory, ignoring specified files | |
""" | |
all_files = [] | |
for ext in LOADER_MAPPING: | |
all_files.extend( | |
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True) | |
) | |
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] | |
with Pool(processes=os.cpu_count()) as pool: | |
results = [] | |
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: | |
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)): | |
results.extend(docs) | |
pbar.update() | |
return results | |
def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]: | |
""" | |
Loads all documents from the source documents directory, ignoring specified files | |
""" | |
# all_files = [] | |
# for ext in LOADER_MAPPING: | |
# all_files.extend( | |
# glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True) | |
# ) | |
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] | |
results = [] | |
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: | |
for file in filtered_files: | |
docs = load_single_document(file) | |
results.extend(docs) | |
pbar.update() | |
return results | |
def process_documents(ignored_files: List[str] = []) -> List[Document]: | |
""" | |
Load documents and split in chunks | |
""" | |
print(f"Loading documents from {source_directory}") | |
documents = load_documents(source_directory, ignored_files) | |
if not documents: | |
print("No new documents to load") | |
exit(0) | |
print(f"Loaded {len(documents)} new documents from {source_directory}") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
texts = text_splitter.split_documents(documents) | |
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)") | |
return texts | |
def process_documents_2(ignored_files: List[str] = []) -> List[Document]: | |
""" | |
Load documents and split in chunks | |
""" | |
global file_list_loaded | |
print(f"Loading documents from {source_directory}") | |
print("File Path to start processing:", file_list_loaded) | |
documents = load_documents_2(file_list_loaded, ignored_files) | |
if not documents: | |
print("No new documents to load") | |
exit(0) | |
print(f"Loaded {len(documents)} new documents from {source_directory}") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
texts = text_splitter.split_documents(documents) | |
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)") | |
return texts | |
def UpdateDb(): | |
global vectordb_p | |
# pinecone.Index(index_name).delete(delete_all=True, namespace='') | |
# collection = vectordb_p.get() | |
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']]) | |
# split_docs = process_documents() | |
split_docs = process_documents_2() | |
tt = len(split_docs) | |
print(split_docs[tt-1]) | |
print(f"Creating embeddings. May take some minutes...") | |
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby") | |
print("Pinecone Updated Done") | |
print(index.describe_index_stats()) | |
class DB_Search(BaseTool): | |
name = "Vector Database Search" | |
description = "This is the internal database to search information firstly. If information is found, it is trustful." | |
def _run(self, query: str) -> str: | |
response, source = QAQuery_p(query) | |
# response = "test db_search feedback" | |
return response | |
def _arun(self, query: str): | |
raise NotImplementedError("N/A") | |
def Text2Sound(text): | |
speech_config = speechsdk.SpeechConfig(subscription=os.getenv('SPEECH_KEY'), region=os.getenv('SPEECH_REGION')) | |
audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True) | |
speech_config.speech_synthesis_voice_name='en-US-JennyNeural' | |
# speech_synthesizer = "" | |
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config) | |
speech_synthesis_result = speech_synthesizer.speak_text_async(text).get() | |
# if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: | |
# print("Speech synthesized for text [{}]".format(text)) | |
# elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled: | |
# cancellation_details = speech_synthesis_result.cancellation_details | |
# print("Speech synthesis canceled: {}".format(cancellation_details.reason)) | |
# if cancellation_details.reason == speechsdk.CancellationReason.Error: | |
# if cancellation_details.error_details: | |
# print("Error details: {}".format(cancellation_details.error_details)) | |
# print("Did you set the speech resource key and region values?") | |
print("test") | |
return speech_synthesis_result | |
pass | |
def get_azure_access_token(): | |
azure_key = os.environ.get("SPEECH_KEY") | |
try: | |
response = requests.post( | |
"https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken", | |
headers={ | |
"Ocp-Apim-Subscription-Key": azure_key | |
} | |
) | |
response.raise_for_status() | |
except requests.exceptions.RequestException as e: | |
print(f"Error: {e}") | |
return None | |
# print (response.text) | |
return response.text | |
def text_to_speech_2(text): | |
global Audio_output | |
access_token = get_azure_access_token() | |
voice_name='en-US-AriaNeural' | |
if not access_token: | |
return None | |
try: | |
response = requests.post( | |
"https://eastus.tts.speech.microsoft.com/cognitiveservices/v1", | |
headers={ | |
"Authorization": f"Bearer {access_token}", | |
"Content-Type": "application/ssml+xml", | |
"X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm", | |
"User-Agent": "TextToSpeechApp", | |
}, | |
data=f""" | |
<speak version='1.0' xml:lang='en-US'> | |
<voice name='{voice_name}'> | |
{text} | |
</voice> | |
</speak> | |
""", | |
) | |
response.raise_for_status() | |
timestr = time.strftime("%Y%m%d-%H%M") | |
with open('sample-' + timestr + '.wav', 'wb') as audio: | |
audio.write(response.content) | |
print ("File Name ", audio.name) | |
# print (audio) | |
Audio_output.append(audio.name) | |
return audio.name | |
except requests.exceptions.RequestException as e: | |
print(f"Error: {e}") | |
return None | |
Text2Sound_tool = Tool( | |
name = "Text To Sound REST API", | |
# func = Text2Sound, | |
func = text_to_speech_2, | |
description = "Useful when you need to convert text into sound file." | |
) | |
Wikipedia = WikipediaAPIWrapper() | |
Netsearch = DuckDuckGoSearchRun() | |
Python_REPL = PythonREPL() | |
wikipedia_tool = Tool( | |
name = "Wikipedia Search", | |
func = Wikipedia.run, | |
description = "Useful to search a topic, country or person when there is no availble information in vector database" | |
) | |
duckduckgo_tool = Tool( | |
name = "Duckduckgo Internet Search", | |
func = Netsearch.run, | |
description = "Useful to search information in internet when it is not available in other tools" | |
) | |
python_tool = Tool( | |
name = "Python REPL", | |
func = Python_REPL.run, | |
description = "Useful when you need python to answer questions. You should input python code." | |
) | |
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool] | |
os.environ["OPENAI_API_TYPE"] = "azure" | |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") | |
os.environ["OPENAI_API_BASE"] = os.getenv("OPENAI_API_BASE") | |
os.environ["OPENAI_API_VERSION"] = "2023-05-15" | |
username = os.getenv("username") | |
password = os.getenv("password") | |
SysLock = os.getenv("SysLock") # 0=unlock 1=lock | |
# deployment_name="Chattester" | |
chat = AzureChatOpenAI( | |
deployment_name=os.getenv("deployment_name"), | |
temperature=0, | |
) | |
llm = chat | |
llm_math = LLMMathChain.from_llm(llm) | |
math_tool = Tool( | |
name ='Calculator', | |
func = llm_math.run, | |
description ='Useful for when you need to answer questions about math.' | |
) | |
tools = [DB_Search(), duckduckgo_tool, wikipedia_tool, python_tool, math_tool, Text2Sound_tool] | |
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm) | |
embeddings = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15) | |
pinecone.init( | |
api_key = os.getenv("pinecone_api_key"), | |
environment='asia-southeast1-gcp-free', | |
# openapi_config=openapi_config | |
) | |
index_name = 'stla-baby' | |
index = pinecone.Index(index_name) | |
# index.delete(delete_all=True, namespace='') | |
# print(pinecone.whoami()) | |
# print(index.describe_index_stats()) | |
""" | |
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful. | |
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools. | |
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database | |
Python REPL: Useful when you need python to answer questions. You should input python code. | |
Calculator: Useful for when you need to answer questions about math. | |
Text To Sound: Useful when you need to convert text into sound file.""" | |
PREFIX = """Answer the following questions as best you can with details. You must always check internal vector database first and try to answer the question based on the information in internal vector database only. | |
Only when there is no information available from vector database, you can search information by using other tools. | |
You can always use tools to convert text to sound. | |
You have access to the following tools:""" | |
FORMAT_INSTRUCTIONS = """Use the following format: | |
Question: the input question you must answer | |
Thought: you should always think about what to do | |
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator] | |
Action Input: the input to the action | |
Observation: the result of the action | |
(this Thought/Action/Action Input/Observation can repeat N times) | |
Thought: I now know the final answer | |
Final Answer: the final answer to the original input question""" | |
SUFFIX = """Begin! | |
{chat_history} | |
Question: {input} | |
Thought:{agent_scratchpad}""" | |
prompt = ZeroShotAgent.create_prompt( | |
tools, | |
prefix=PREFIX, | |
suffix=SUFFIX, | |
format_instructions=FORMAT_INSTRUCTIONS, | |
input_variables=["input", "chat_history", "agent_scratchpad"] | |
) | |
input_variables=["input", "chat_history", "agent_scratchpad"] | |
agent = initialize_agent(tools, llm, | |
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, | |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, | |
verbose = True, | |
handle_parsing_errors = True, | |
max_iterations = int(os.getenv("max_iterations")), | |
early_stopping_method="generate", | |
agent_kwargs={ | |
'prefix': PREFIX, | |
'format_instructions': FORMAT_INSTRUCTIONS, | |
'suffix': SUFFIX, | |
'inputinput_variables': input_variables | |
}, | |
# agent_kwargs={ | |
# 'prompt': prompt, | |
# } | |
) | |
print(agent.agent.llm_chain.prompt.template) | |
# print(agent.agent.llm_chain.prompt) | |
global vectordb | |
vectordb = Chroma(persist_directory='db', embedding_function=embeddings) | |
global vectordb_p | |
vectordb_p = Pinecone.from_existing_index(index_name, embeddings) | |
# loader = DirectoryLoader('./documents', glob='**/*.txt') | |
# documents = loader.load() | |
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200) | |
# split_docs = text_splitter.split_documents(documents) | |
# print(split_docs) | |
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db') | |
# question = "what is LCDV ?" | |
# rr = vectordb.similarity_search(query=question, k=4) | |
# vectordb.similarity_search(question) | |
# print(type(rr)) | |
# print(rr) | |
def chathmi(message, history): | |
# response = "I don't know" | |
# print(message) | |
response, source = QAQuery_p(message) | |
time.sleep(0.3) | |
print(history) | |
yield response | |
# yield history | |
def chathmi2(message, history): | |
global Audio_output | |
try: | |
output = agent.run(message) | |
time.sleep(0.3) | |
response = output | |
yield response | |
if len(Audio_output) > 0: | |
# time.sleep(0.5) | |
yield Audio_output | |
Audio_output = [] | |
print("History: ", history) | |
print("-" * 20) | |
print("-" * 20) | |
except Exception as e: | |
print("error:", e) | |
# yield history | |
# chatbot = gr.Chatbot().style(color_map =("blue", "pink")) | |
# chatbot = gr.Chatbot(color_map =("blue", "pink")) | |
def func_upload_file(files, chat_history): | |
global file_list_loaded | |
file_list_loaded = [] | |
for unit in files: | |
file_list_loaded.append(unit.name) | |
# file_list_loaded = files | |
print(file_list_loaded) | |
# print(chat_history) | |
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."] | |
# chat_history.append(test_msg) | |
for file in files: | |
chat_history = chat_history + [((file.name,), None)] | |
yield chat_history | |
if os.getenv("SYS_Upload_Enable") == "1": | |
UpdateDb() | |
test_msg = ["Request Upload File into DB", "Operation Finished"] | |
chat_history.append(test_msg) | |
yield chat_history | |
with gr.Blocks() as demo: | |
# gr.Markdown("Start typing below and then click **SUBMIT** to see the output.") | |
main = gr.ChatInterface( | |
chathmi2, | |
title="STLA BABY - YOUR FRIENDLY GUIDE", | |
description= "v0.3: Powered by MECH Core Team", | |
) | |
upload_button = gr.UploadButton("Upload File", file_count="multiple") | |
upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot) | |
# demo = gr.Interface( | |
# chathmi, | |
# ["text", "state"], | |
# [chatbot, "state"], | |
# allow_flagging="never", | |
# ) | |
def CreatDb_P(): | |
global vectordb_p | |
index_name = 'stla-baby' | |
loader = DirectoryLoader('./documents', glob='**/*.txt') | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200) | |
split_docs = text_splitter.split_documents(documents) | |
print(split_docs) | |
pinecone.Index(index_name).delete(delete_all=True, namespace='') | |
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby") | |
print("Pinecone Updated Done") | |
print(index.describe_index_stats()) | |
def QAQuery_p(question: str): | |
global vectordb_p | |
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings) | |
retriever = vectordb_p.as_retriever() | |
retriever.search_kwargs['k'] = int(os.getenv("search_kwargs_k")) | |
# retriever.search_kwargs['fetch_k'] = 100 | |
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", | |
retriever=retriever, return_source_documents = True, | |
verbose = True) | |
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True) | |
# res = qa.run(question) | |
res = qa({"query": question}) | |
print("-" * 20) | |
print("Question:", question) | |
# print("Answer:", res) | |
print("Answer:", res['result']) | |
print("-" * 20) | |
print("Source:", res['source_documents']) | |
response = res['result'] | |
# response = res['source_documents'] | |
source = res['source_documents'] | |
return response, source | |
def CreatDb(): | |
global vectordb | |
loader = DirectoryLoader('./documents', glob='**/*.txt') | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200) | |
split_docs = text_splitter.split_documents(documents) | |
print(split_docs) | |
vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db') | |
vectordb.persist() | |
def QAQuery(question: str): | |
global vectordb | |
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings) | |
retriever = vectordb.as_retriever() | |
retriever.search_kwargs['k'] = 3 | |
# retriever.search_kwargs['fetch_k'] = 100 | |
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True) | |
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True) | |
# res = qa.run(question) | |
res = qa({"query": question}) | |
print("-" * 20) | |
print("Question:", question) | |
# print("Answer:", res) | |
print("Answer:", res['result']) | |
print("-" * 20) | |
print("Source:", res['source_documents']) | |
response = res['result'] | |
return response | |
# Used to complete content | |
def completeText(Text): | |
deployment_id="Chattester" | |
prompt = Text | |
completion = openai.Completion.create(deployment_id=deployment_id, | |
prompt=prompt, temperature=0) | |
print(f"{prompt}{completion['choices'][0]['text']}.") | |
# Used to chat | |
def chatText(Text): | |
deployment_id="Chattester" | |
conversation = [{"role": "system", "content": "You are a helpful assistant."}] | |
user_input = Text | |
conversation.append({"role": "user", "content": user_input}) | |
response = openai.ChatCompletion.create(messages=conversation, | |
deployment_id="Chattester") | |
print("\n" + response["choices"][0]["message"]["content"] + "\n") | |
if __name__ == '__main__': | |
# chatText("what is AI?") | |
# CreatDb() | |
# QAQuery("what is COFOR ?") | |
# CreatDb_P() | |
# QAQuery_p("what is GST ?") | |
if SysLock == "1": | |
demo.queue().launch(auth=(username, password), server_name="0.0.0.0", server_port=7860) | |
else: | |
demo.queue().launch(server_name="0.0.0.0", server_port=7860) | |
pass | |