Spaces:
Runtime error
Runtime error
Commit
·
3b25af6
1
Parent(s):
46f4c4b
correct QA math
Browse files
app.py
CHANGED
@@ -574,18 +574,27 @@ llm = chat
|
|
574 |
|
575 |
llm_math = LLMMathChain.from_llm(llm)
|
576 |
|
|
|
|
|
577 |
math_tool = Tool(
|
578 |
name ='Calculator',
|
579 |
func = llm_math.run,
|
580 |
description ='Useful for when you need to answer questions about math.'
|
581 |
)
|
582 |
|
|
|
|
|
|
|
|
|
|
|
583 |
|
584 |
# openai
|
585 |
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool, Text2Sound_tool]
|
586 |
|
587 |
tools2 = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool, Text2Sound_tool2]
|
588 |
|
|
|
|
|
589 |
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
|
590 |
|
591 |
# Openai embedding
|
@@ -733,7 +742,7 @@ agent_ZEROSHOT_REACT = initialize_agent(tools2, llm,
|
|
733 |
|
734 |
)
|
735 |
|
736 |
-
agent_ZEROSHOT_REACT_2 = initialize_agent(
|
737 |
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
738 |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
739 |
verbose = True,
|
@@ -778,7 +787,7 @@ agent_ZEROSHOT_AGENT = AgentExecutor.from_agent_and_tools(
|
|
778 |
|
779 |
agent_ZEROSHOT_AGENT_2 = AgentExecutor.from_agent_and_tools(
|
780 |
agent=agent_core_2,
|
781 |
-
tools=
|
782 |
verbose=True,
|
783 |
# memory=memory,
|
784 |
handle_parsing_errors = True,
|
@@ -1409,11 +1418,13 @@ def QAQuery_p(question: str):
|
|
1409 |
retriever = vectordb_p.as_retriever()
|
1410 |
retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
|
1411 |
# retriever.search_kwargs['fetch_k'] = 100
|
1412 |
-
if agent == agent_ZEROSHOT_REACT_2:
|
|
|
1413 |
qa = RetrievalQA.from_chain_type(llm=GPTfake, chain_type="stuff",
|
1414 |
retriever=retriever, return_source_documents = True,
|
1415 |
verbose = True)
|
1416 |
else:
|
|
|
1417 |
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
|
1418 |
retriever=retriever, return_source_documents = True,
|
1419 |
verbose = True)
|
@@ -1489,7 +1500,7 @@ if __name__ == '__main__':
|
|
1489 |
# CreatDb()
|
1490 |
# QAQuery("what is COFOR ?")
|
1491 |
# CreatDb_P()
|
1492 |
-
|
1493 |
# question = "what is PDP?"
|
1494 |
# output = asyncio.run(start_playwright(question))
|
1495 |
|
|
|
574 |
|
575 |
llm_math = LLMMathChain.from_llm(llm)
|
576 |
|
577 |
+
llm_math_2 = LLMMathChain.from_llm(GPTfake)
|
578 |
+
|
579 |
math_tool = Tool(
|
580 |
name ='Calculator',
|
581 |
func = llm_math.run,
|
582 |
description ='Useful for when you need to answer questions about math.'
|
583 |
)
|
584 |
|
585 |
+
math_tool_2 = Tool(
|
586 |
+
name ='Calculator',
|
587 |
+
func = llm_math_2.run,
|
588 |
+
description ='Useful for when you need to answer questions about math.'
|
589 |
+
)
|
590 |
|
591 |
# openai
|
592 |
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool, Text2Sound_tool]
|
593 |
|
594 |
tools2 = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool, Text2Sound_tool2]
|
595 |
|
596 |
+
tools_remote = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool_2, Text2Sound_tool2]
|
597 |
+
|
598 |
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
|
599 |
|
600 |
# Openai embedding
|
|
|
742 |
|
743 |
)
|
744 |
|
745 |
+
agent_ZEROSHOT_REACT_2 = initialize_agent(tools_remote, GPTfake,
|
746 |
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
747 |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
748 |
verbose = True,
|
|
|
787 |
|
788 |
agent_ZEROSHOT_AGENT_2 = AgentExecutor.from_agent_and_tools(
|
789 |
agent=agent_core_2,
|
790 |
+
tools=tools_remote,
|
791 |
verbose=True,
|
792 |
# memory=memory,
|
793 |
handle_parsing_errors = True,
|
|
|
1418 |
retriever = vectordb_p.as_retriever()
|
1419 |
retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
|
1420 |
# retriever.search_kwargs['fetch_k'] = 100
|
1421 |
+
if agent == agent_ZEROSHOT_REACT_2 or agent == agent_ZEROSHOT_AGENT_2:
|
1422 |
+
print("--------------- QA with Remote --------------")
|
1423 |
qa = RetrievalQA.from_chain_type(llm=GPTfake, chain_type="stuff",
|
1424 |
retriever=retriever, return_source_documents = True,
|
1425 |
verbose = True)
|
1426 |
else:
|
1427 |
+
print("--------------- QA with API --------------")
|
1428 |
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
|
1429 |
retriever=retriever, return_source_documents = True,
|
1430 |
verbose = True)
|
|
|
1500 |
# CreatDb()
|
1501 |
# QAQuery("what is COFOR ?")
|
1502 |
# CreatDb_P()
|
1503 |
+
QAQuery_p("what is PDP ?")
|
1504 |
# question = "what is PDP?"
|
1505 |
# output = asyncio.run(start_playwright(question))
|
1506 |
|