Spaces:
Runtime error
Runtime error
Commit
·
9a3cbb5
1
Parent(s):
fbf6894
Add current Agent
Browse files
app.py
CHANGED
@@ -90,11 +90,16 @@ from codeinterpreterapi import CodeInterpreterSession
|
|
90 |
import html2text
|
91 |
|
92 |
from interpreter.code_interpreter import CodeInterpreter
|
93 |
-
from interpreter.code_block import CodeBlock
|
94 |
|
95 |
import regex
|
96 |
|
|
|
|
|
97 |
class CodeBlock:
|
|
|
|
|
|
|
98 |
def __init__(self, code):
|
99 |
self.code = code
|
100 |
self.output = ""
|
@@ -115,7 +120,9 @@ code_2 = """
|
|
115 |
|
116 |
def Code_Runner(code_raw: str):
|
117 |
# interpreter = CodeInterpreter(language="python", debug_mode=True)
|
118 |
-
|
|
|
|
|
119 |
if '!pip' in code_raw:
|
120 |
code_raw=code_raw.replace('!pip', 'pip')
|
121 |
interpreter = CodeInterpreter(language="shell", debug_mode=True)
|
@@ -278,9 +285,9 @@ class GPTRemote(LLM):
|
|
278 |
if 'Action:' in output and 'Observation:' in output:
|
279 |
output = output.split('Observation:')[0]
|
280 |
|
281 |
-
global
|
282 |
# if Choice == "Structured Zero Short Agent":
|
283 |
-
if
|
284 |
try:
|
285 |
# temp = output.split('{')[1].split('}')[0:-2]
|
286 |
pattern = r'\{((?:[^{}]|(?R))*)\}'
|
@@ -567,6 +574,7 @@ ListAgentWithRemoteGPT = ['Zero Short React 2','Zero Short Agent 2',
|
|
567 |
def SummarizeDoc():
|
568 |
global vectordb_p
|
569 |
global Choice
|
|
|
570 |
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
|
571 |
# collection = vectordb_p.get()
|
572 |
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
@@ -576,7 +584,7 @@ def SummarizeDoc():
|
|
576 |
print(split_docs[tt-1])
|
577 |
sum_text=""
|
578 |
try:
|
579 |
-
if
|
580 |
sum_chain = load_summarize_chain(GPTfake, chain_type='refine', verbose=True)
|
581 |
else:
|
582 |
sum_chain = load_summarize_chain(llm, chain_type='refine', verbose=True)
|
@@ -1161,9 +1169,12 @@ agent_OPENAI_MULTI = AgentExecutor.from_agent_and_tools(
|
|
1161 |
# agent.max_execution_time = int(os.getenv("max_iterations"))
|
1162 |
# agent.handle_parsing_errors = True
|
1163 |
# agent.early_stopping_method = "generate"
|
|
|
|
|
1164 |
|
1165 |
def SetAgent(Choice):
|
1166 |
global agent
|
|
|
1167 |
if Choice =='Zero Short Agent':
|
1168 |
agent = agent_ZEROSHOT_AGENT
|
1169 |
print("Set to:", Choice)
|
@@ -1191,7 +1202,9 @@ def SetAgent(Choice):
|
|
1191 |
elif Choice =='Structured Zero Short Agent':
|
1192 |
agent = agent_STRUCTURED_ZEROSHOT_REACT
|
1193 |
print("Set to:", Choice)
|
1194 |
-
|
|
|
|
|
1195 |
|
1196 |
|
1197 |
|
@@ -1870,12 +1883,13 @@ def QAQuery_p(question: str):
|
|
1870 |
global vectordb_p
|
1871 |
global agent
|
1872 |
global Choice
|
|
|
1873 |
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
1874 |
retriever = vectordb_p.as_retriever()
|
1875 |
retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
|
1876 |
# retriever.search_kwargs['fetch_k'] = 100
|
1877 |
# if agent == agent_ZEROSHOT_REACT_2 or agent == agent_ZEROSHOT_AGENT_2:
|
1878 |
-
if
|
1879 |
print("--------------- QA with Remote --------------")
|
1880 |
qa = RetrievalQA.from_chain_type(llm=GPTfake, chain_type="stuff",
|
1881 |
retriever=retriever, return_source_documents = True,
|
|
|
90 |
import html2text
|
91 |
|
92 |
from interpreter.code_interpreter import CodeInterpreter
|
93 |
+
# from interpreter.code_block import CodeBlock
|
94 |
|
95 |
import regex
|
96 |
|
97 |
+
|
98 |
+
|
99 |
class CodeBlock:
|
100 |
+
'''
|
101 |
+
CodeBlock Class which is able to run in Code Runner
|
102 |
+
'''
|
103 |
def __init__(self, code):
|
104 |
self.code = code
|
105 |
self.output = ""
|
|
|
120 |
|
121 |
def Code_Runner(code_raw: str):
|
122 |
# interpreter = CodeInterpreter(language="python", debug_mode=True)
|
123 |
+
global CurrentAgent
|
124 |
+
if CurrentAgent == "Zero Short React 2":
|
125 |
+
code_raw = RemoveIndent(code_raw)
|
126 |
if '!pip' in code_raw:
|
127 |
code_raw=code_raw.replace('!pip', 'pip')
|
128 |
interpreter = CodeInterpreter(language="shell", debug_mode=True)
|
|
|
285 |
if 'Action:' in output and 'Observation:' in output:
|
286 |
output = output.split('Observation:')[0]
|
287 |
|
288 |
+
global CurrentAgent
|
289 |
# if Choice == "Structured Zero Short Agent":
|
290 |
+
if CurrentAgent == 'Structured Zero Short Agent':
|
291 |
try:
|
292 |
# temp = output.split('{')[1].split('}')[0:-2]
|
293 |
pattern = r'\{((?:[^{}]|(?R))*)\}'
|
|
|
574 |
def SummarizeDoc():
|
575 |
global vectordb_p
|
576 |
global Choice
|
577 |
+
global CurrentAgent
|
578 |
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
|
579 |
# collection = vectordb_p.get()
|
580 |
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
|
|
584 |
print(split_docs[tt-1])
|
585 |
sum_text=""
|
586 |
try:
|
587 |
+
if CurrentAgent in ListAgentWithRemoteGPT:
|
588 |
sum_chain = load_summarize_chain(GPTfake, chain_type='refine', verbose=True)
|
589 |
else:
|
590 |
sum_chain = load_summarize_chain(llm, chain_type='refine', verbose=True)
|
|
|
1169 |
# agent.max_execution_time = int(os.getenv("max_iterations"))
|
1170 |
# agent.handle_parsing_errors = True
|
1171 |
# agent.early_stopping_method = "generate"
|
1172 |
+
global CurrentAgent
|
1173 |
+
CurrentAgent = ""
|
1174 |
|
1175 |
def SetAgent(Choice):
|
1176 |
global agent
|
1177 |
+
global CurrentAgent
|
1178 |
if Choice =='Zero Short Agent':
|
1179 |
agent = agent_ZEROSHOT_AGENT
|
1180 |
print("Set to:", Choice)
|
|
|
1202 |
elif Choice =='Structured Zero Short Agent':
|
1203 |
agent = agent_STRUCTURED_ZEROSHOT_REACT
|
1204 |
print("Set to:", Choice)
|
1205 |
+
|
1206 |
+
CurrentAgent = Choice
|
1207 |
+
return CurrentAgent
|
1208 |
|
1209 |
|
1210 |
|
|
|
1883 |
global vectordb_p
|
1884 |
global agent
|
1885 |
global Choice
|
1886 |
+
global CurrentAgent
|
1887 |
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
1888 |
retriever = vectordb_p.as_retriever()
|
1889 |
retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
|
1890 |
# retriever.search_kwargs['fetch_k'] = 100
|
1891 |
# if agent == agent_ZEROSHOT_REACT_2 or agent == agent_ZEROSHOT_AGENT_2:
|
1892 |
+
if CurrentAgent in ListAgentWithRemoteGPT:
|
1893 |
print("--------------- QA with Remote --------------")
|
1894 |
qa = RetrievalQA.from_chain_type(llm=GPTfake, chain_type="stuff",
|
1895 |
retriever=retriever, return_source_documents = True,
|