Spaces:
Runtime error
Runtime error
Commit
·
e5e6ba2
1
Parent(s):
692c112
Add application file
Browse files- baby.py +201 -0
- requirements.txt +5 -0
baby.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import os
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
5 |
+
from langchain.text_splitter import CharacterTextSplitter
|
6 |
+
from langchain.chat_models import AzureChatOpenAI
|
7 |
+
from langchain.document_loaders import DirectoryLoader
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain.vectorstores import Pinecone
|
10 |
+
import pinecone
|
11 |
+
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
|
12 |
+
import gradio as gr
|
13 |
+
import time
|
14 |
+
|
15 |
+
# socks.set_default_proxy(socks.SOCKS5, "http://u477827:4rfgt54r@http.internetpsa.inetpsa.com", 80)
|
16 |
+
# socket.socket = socks.socksocket
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# with open('2.txt') as f:
|
21 |
+
# state_of_the_union = f.read()
|
22 |
+
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
23 |
+
# texts = text_splitter.create_documents([state_of_the_union])
|
24 |
+
# print(texts[0])
|
25 |
+
# print(texts[1])
|
26 |
+
|
27 |
+
os.environ["OPENAI_API_TYPE"] = "azure"
|
28 |
+
os.environ["OPENAI_API_KEY"] = "f930f70cf65f48a8a750a22c813ba1b3"
|
29 |
+
os.environ["OPENAI_API_BASE"] = "https://stla-baby.openai.azure.com/"
|
30 |
+
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
|
31 |
+
os.environ["OPENAI_PROXY"] = 'http://u477827:4rfgt54r@http.internetpsa.inetpsa.com:80'
|
32 |
+
|
33 |
+
# openai.api_type = "azure"
|
34 |
+
# openai.api_key = "f930f70cf65f48a8a750a22c813ba1b3"
|
35 |
+
# openai.api_base = "https://stla-baby.openai.azure.com/"
|
36 |
+
# openai.api_version = "2023-05-15" # subject to change
|
37 |
+
# # openai.proxy = 'http://u477827:4rfgt54r@http.internetpsa.inetpsa.com:80'
|
38 |
+
# openai.proxy = 'http://u477827:4rfgt54r@http.ntlm.internetpsa.inetpsa.com:8080'
|
39 |
+
|
40 |
+
|
41 |
+
chat = AzureChatOpenAI(
|
42 |
+
deployment_name="Chattester",
|
43 |
+
temperature=0,
|
44 |
+
)
|
45 |
+
|
46 |
+
embeddings = OpenAIEmbeddings(deployment="model_embedding")
|
47 |
+
|
48 |
+
|
49 |
+
openapi_config = OpenApiConfiguration.get_default_copy()
|
50 |
+
# openapi_config.verify_ssl = True
|
51 |
+
openapi_config.proxy = "http://u477827:4rfgt54r@http.internetpsa.inetpsa.com:80"
|
52 |
+
# openapi_config.proxy = "http://u477827:4rfgt54r@http.ntlm.internetpsa.inetpsa.com:8080"
|
53 |
+
|
54 |
+
pinecone.init(
|
55 |
+
api_key='0def3ea0-93cd-4ead-b0c6-2ab44b3ede21',
|
56 |
+
environment='asia-southeast1-gcp-free',
|
57 |
+
openapi_config=openapi_config
|
58 |
+
)
|
59 |
+
index_name = 'stla-baby'
|
60 |
+
index = pinecone.Index(index_name)
|
61 |
+
# index.delete(delete_all=True, namespace='')
|
62 |
+
# print(pinecone.whoami())
|
63 |
+
# print(index.describe_index_stats())
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
global vectordb
|
68 |
+
vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
69 |
+
global vectordb_p
|
70 |
+
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
|
71 |
+
|
72 |
+
# loader = DirectoryLoader('./documents', glob='**/*.txt')
|
73 |
+
# documents = loader.load()
|
74 |
+
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
|
75 |
+
# split_docs = text_splitter.split_documents(documents)
|
76 |
+
# print(split_docs)
|
77 |
+
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# question = "what is LCDV ?"
|
82 |
+
# rr = vectordb.similarity_search(query=question, k=4)
|
83 |
+
# vectordb.similarity_search(question)
|
84 |
+
# print(type(rr))
|
85 |
+
# print(rr)
|
86 |
+
def chathmi(message, history):
|
87 |
+
response = "I don't know"
|
88 |
+
print(message)
|
89 |
+
response = QAQuery_p(message)
|
90 |
+
time.sleep(0.3)
|
91 |
+
print(history)
|
92 |
+
return response
|
93 |
+
|
94 |
+
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
|
95 |
+
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
|
96 |
+
|
97 |
+
demo = gr.ChatInterface(
|
98 |
+
chathmi,
|
99 |
+
title="STLA BABY - YOUR FRIENDLY GUIDE",
|
100 |
+
)
|
101 |
+
|
102 |
+
# demo = gr.Interface(
|
103 |
+
# chathmi,
|
104 |
+
# ["text", "state"],
|
105 |
+
# [chatbot, "state"],
|
106 |
+
# allow_flagging="never",
|
107 |
+
# )
|
108 |
+
|
109 |
+
def CreatDb_P():
|
110 |
+
global vectordb_p
|
111 |
+
index_name = 'stla-baby'
|
112 |
+
loader = DirectoryLoader('./documents', glob='**/*.txt')
|
113 |
+
documents = loader.load()
|
114 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
|
115 |
+
split_docs = text_splitter.split_documents(documents)
|
116 |
+
print(split_docs)
|
117 |
+
pinecone.Index(index_name).delete(delete_all=True, namespace='')
|
118 |
+
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
|
119 |
+
print("Pinecone Updated Done")
|
120 |
+
print(index.describe_index_stats())
|
121 |
+
|
122 |
+
def QAQuery_p(question: str):
|
123 |
+
global vectordb_p
|
124 |
+
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
125 |
+
retriever = vectordb_p.as_retriever()
|
126 |
+
retriever.search_kwargs['k'] = 3
|
127 |
+
# retriever.search_kwargs['fetch_k'] = 100
|
128 |
+
|
129 |
+
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
|
130 |
+
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
|
131 |
+
# res = qa.run(question)
|
132 |
+
res = qa({"query": question})
|
133 |
+
|
134 |
+
print("-" * 20)
|
135 |
+
print("Question:", question)
|
136 |
+
# print("Answer:", res)
|
137 |
+
print("Answer:", res['result'])
|
138 |
+
print("-" * 20)
|
139 |
+
print("Source:", res['source_documents'])
|
140 |
+
response = res['result']
|
141 |
+
# response = res['source_documents']
|
142 |
+
return response
|
143 |
+
|
144 |
+
def CreatDb():
|
145 |
+
global vectordb
|
146 |
+
loader = DirectoryLoader('./documents', glob='**/*.txt')
|
147 |
+
documents = loader.load()
|
148 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
|
149 |
+
split_docs = text_splitter.split_documents(documents)
|
150 |
+
print(split_docs)
|
151 |
+
vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
|
152 |
+
vectordb.persist()
|
153 |
+
|
154 |
+
def QAQuery(question: str):
|
155 |
+
global vectordb
|
156 |
+
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
|
157 |
+
retriever = vectordb.as_retriever()
|
158 |
+
retriever.search_kwargs['k'] = 3
|
159 |
+
# retriever.search_kwargs['fetch_k'] = 100
|
160 |
+
|
161 |
+
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
|
162 |
+
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
|
163 |
+
# res = qa.run(question)
|
164 |
+
res = qa({"query": question})
|
165 |
+
|
166 |
+
print("-" * 20)
|
167 |
+
print("Question:", question)
|
168 |
+
# print("Answer:", res)
|
169 |
+
print("Answer:", res['result'])
|
170 |
+
print("-" * 20)
|
171 |
+
print("Source:", res['source_documents'])
|
172 |
+
|
173 |
+
|
174 |
+
# Used to complete content
|
175 |
+
def completeText(Text):
|
176 |
+
deployment_id="Chattester"
|
177 |
+
prompt = Text
|
178 |
+
completion = openai.Completion.create(deployment_id=deployment_id,
|
179 |
+
prompt=prompt, temperature=0)
|
180 |
+
print(f"{prompt}{completion['choices'][0]['text']}.")
|
181 |
+
|
182 |
+
# Used to chat
|
183 |
+
def chatText(Text):
|
184 |
+
deployment_id="Chattester"
|
185 |
+
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
|
186 |
+
user_input = Text
|
187 |
+
conversation.append({"role": "user", "content": user_input})
|
188 |
+
response = openai.ChatCompletion.create(messages=conversation,
|
189 |
+
deployment_id="Chattester")
|
190 |
+
print("\n" + response["choices"][0]["message"]["content"] + "\n")
|
191 |
+
|
192 |
+
if __name__ == '__main__':
|
193 |
+
# chatText("what is AI?")
|
194 |
+
# CreatDb()
|
195 |
+
# QAQuery("what is COFOR ?")
|
196 |
+
# CreatDb_P()
|
197 |
+
# QAQuery_p("what is GST ?")
|
198 |
+
demo.queue().launch()
|
199 |
+
pass
|
200 |
+
|
201 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
chromadb
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
gradio
|
5 |
+
pinecone-client
|