# from typing import Any, Coroutine
import openai
import os
# from langchain.vectorstores import Chroma
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import AzureChatOpenAI
from langchain.document_loaders import DirectoryLoader
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.agents import Tool
# from langchain.agents import load_tools
from langchain.tools import BaseTool
from langchain.tools import DuckDuckGoSearchRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.python import PythonREPL
from langchain.chains import LLMMathChain
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationBufferWindowMemory
from langchain.agents import ZeroShotAgent, AgentExecutor
from langchain.agents import OpenAIMultiFunctionsAgent
from langchain.prompts import MessagesPlaceholder
from langchain.chains.summarize import load_summarize_chain
from langchain.schema.messages import (
AIMessage,
BaseMessage,
FunctionMessage,
SystemMessage,
)
from langchain import LLMChain
import azure.cognitiveservices.speech as speechsdk
import requests
import sys
import pinecone
from pinecone.core.client.configuration import Configuration as OpenApiConfiguration
import gradio as gr
import time
import glob
from typing import Any, List, Mapping, Optional
from multiprocessing import Pool
from tqdm import tqdm
from pygame import mixer
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PyMuPDFLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader,
UnstructuredExcelLoader
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.text_splitter import TokenTextSplitter
from langchain.docstore.document import Document
import langchain
import asyncio
from playwright.async_api import async_playwright
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.llms.base import LLM
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.schema import (
Generation,
LLMResult
)
import time
from datasets import load_dataset
from transformers import pipeline
import soundfile as sf
from scipy.io import wavfile
import re
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
import torch
from codeinterpreterapi import CodeInterpreterSession
async def TestCodeInterpret(CustomMessage:str):
# create a session
session = CodeInterpreterSession(llm=GPTfake)
session.start()
# generate a response based on user input
response = await session.generate_response(CustomMessage)
# output the response (text + image)
print("AI: ", response.content)
for file in response.files:
file.show_image()
# terminate the session
session.stop()
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = ds[0]["audio"]
global Audio_output
Audio_output = []
def speech_to_text_loc(audio):
device = "cpu"
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
chunk_length_s=30,
device=device,
)
print("type of audio:", type(audio))
if type(audio) == dict:
text = pipe(audio.copy(), batch_size=2)["text"]
else:
text = pipe(audio, batch_size=2)["text"]
return text
print("voice to text loc: ", speech_to_text_loc(sample))
def text_to_speech_loc(text):
device = "cpu"
pipe = pipeline(
"text-to-speech",
model="microsoft/speecht5_tts",
device=device,
)
output = pipe(text)
speech = output["audio"]
sampling_rate = output["sampling_rate"]
print("Type of speech: ", type(speech))
print("sampling_rate: ", sampling_rate)
timestr = time.strftime("%Y%m%d-%H%M%S")
# sampling_rate = 16000
with open('sample-' + timestr + '.wav', 'wb') as audio:
wavfile.write(audio, sampling_rate, speech)
# audio = sf.write("convert1.wav", speech, samplerate=16000)
print("audio: ", audio)
return audio
def text_to_speech_loc2(Text_input):
global Audio_output
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
inputs = processor(text = Text_input, return_tensors="pt")
# load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
print("Type of speech: ", type(speech))
timestr = time.strftime("%Y%m%d-%H%M%S")
# sampling_rate = 16000
with open('sample-' + timestr + '.wav', 'wb') as audio:
sf.write(audio, speech.numpy(), samplerate=16000)
# audio = sf.write("convert1.wav", speech, samplerate=16000)
print("audio: ", audio)
Audio_output.append(audio.name)
return audio
print("text to speech2: ", text_to_speech_loc2("Good morning."))
class GPTRemote(LLM):
n: int
@property
def _llm_type(self) -> str:
return "custom"
def _call(
self,
prompt: str,
stop: Optional [List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any
) -> str:
print("prompt:", prompt)
output = asyncio.run(start_playwright(prompt))
# output = "test custom llm"
# print(type(output))
if output is None:
output = "No Feedback"
print("-" * 20)
print('Raw: \n', output)
keywords = ['Action:', 'Action Input:', 'Observation:', 'Thought:', 'Final Answer:']
# print("Judge 1: ", 'Action:' in output)
# print("Judge 2: ", 'Action Input:' in output)
# print("Judge 3: ", 'Observation:' in output)
# print("Judge 4: ", 'Thought:' in output)
# print("Judge Final Answer: ",'Final Answer:' in output)
# for item in keywords:
# if item in output:
# output = output.replace(item, '\n'+item)
# if '|' in output:
# output = output.replace('|', '')
# if 'Thought:' not in output:
# output = 'Thought:'+ output
if 'Action Input:' in output and 'Observation:' in output:
output = output.split('Observation:')[0]
print("-" * 20)
print("Treated output: \n", output)
return output
@property
def _identifying_params(self) -> Mapping[str, Any]:
return [("n", self.n)]
def treat_output(text):
keywords = ['Action:', 'Action Input:', 'Observation:', 'Thought:', 'Final Answer:']
for item in keywords:
if item in text:
text.replace(item, '\n'+item)
print("treat output: ", text)
return text
# def _generate(
# self,
# prompts: List[str],
# stop: Optional[List[str]] = None,
# run_manager: Optional[CallbackManagerForLLMRun] = None,
# **kwargs: Any,
# ) -> LLMResult:
# result = LLMResult()
# result.generations = [Generation("test result")]
# return result
# """Run the LLM on the given prompts."""
GPTfake = GPTRemote(n=0)
async def start_playwright(question: str):
start_t = time.time()
pw = await async_playwright().start()
browser = await pw.chromium.launch(headless=True)
end_t = time.time()
print("Init Browser Done:", end_t - start_t)
start_t = end_t
# browser = await pw.webkit.launch(headless=True)
page = await browser.new_page()
# note all methods are async (use the "await" keyword)
await page.goto(os.environ["Endpoint_GPT4"])
# print("Title of Web: ", await page.title())
end_t = time.time()
print("New Page Done:", end_t - start_t)
start_t = end_t
await page.wait_for_timeout(200)
# print("Content of Web: ", await page.content())
# print("Test content: ", await page.locator("//div[@class='css-zt5igj e1nzilvr3']").inner_html())
# print("Test content: ", await page.locator("//div[@class='css-zt5igj e1nzilvr3']").inner_text())
await page.locator("//textarea").fill(question)
await page.wait_for_timeout(200)
# print("Content of Web: ", await page.content())
# await page.locator("//button[@class='css-1wi2cd3 e1d2x3se3']").click()
await page.locator("//textarea").press("Enter")
await page.wait_for_timeout(200)
# print("Content of Web: ", await page.content())
# print("output_text 1", await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text())
# output_text = await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text()
# print("output_text 1", output_text)
output_history = "NOTHING"
for i in range(100):
output_text = await page.locator("//div[@aria-label='Chat message from assistant']").last.inner_text()
print("output_text... :")
if output_text == output_history and '▌' not in output_text and output_text != "":
end_t = time.time()
print("Output Done:", end_t - start_t)
return output_text
else:
await page.wait_for_timeout(500)
output_history = output_text
print("-------- Final Answer-----------\n", output_text)
await browser.close()
# import playsound
langchain.debug = True
global memory2
memory2 = ConversationBufferWindowMemory(memory_key="chat_history")
global memory_openai
memory_openai = ConversationBufferWindowMemory(memory_key="memory", return_messages=True)
global last_request
last_request = ""
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""Wrapper to fallback to text/plain when default does not work"""
def load(self) -> List[Document]:
"""Wrapper adding fallback for elm without html"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"]="text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PyMuPDFLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
".xls": (UnstructuredExcelLoader, {}),
".xlsx": (UnstructuredExcelLoader, {"mode":"elements"}),
# Add more mappings for other file extensions and loaders as needed
}
source_directory = 'Upload Files'
global file_list_loaded
file_list_loaded = ''
chunk_size = 500
chunk_overlap = 300
global Filename_Chatbot
Filename_Chatbot = ""
def load_single_document(file_path: str) -> List[Document]:
ext = "." + file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"Unsupported file extension '{ext}'")
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def load_documents_2(all_files: List[str] = [], ignored_files: List[str] = []) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
# all_files = []
# for ext in LOADER_MAPPING:
# all_files.extend(
# glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
# )
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for file in filtered_files:
docs = load_single_document(file)
results.extend(docs)
pbar.update()
return results
def process_documents(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
print(f"Loading documents from {source_directory}")
documents = load_documents(source_directory, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_2(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
text_splitter = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def process_documents_3(ignored_files: List[str] = []) -> List[Document]:
"""
Load documents and split in chunks
"""
global file_list_loaded
print(f"Loading documents from {source_directory}")
print("File Path to start processing:", file_list_loaded)
documents = load_documents_2(file_list_loaded, ignored_files)
if not documents:
print("No new documents to load")
exit(0)
print(f"Loaded {len(documents)} new documents from {source_directory}")
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=8000, chunk_overlap=1000)
text_splitter = TokenTextSplitter(chunk_size=4000, chunk_overlap=500)
texts = text_splitter.split_documents(documents)
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
return texts
def UpdateDb():
global vectordb_p
global index_name
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_2()
tt = len(split_docs)
print(split_docs[tt-1])
print(f"Creating embeddings. May take some minutes...")
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = index_name)
print("Pinecone Updated Done")
print(index.describe_index_stats())
ListAgentWithRemoteGPT = ['Zero Short React 2','Zero Short Agent 2',
'OpenAI Multi 2', 'Conversation Agent']
def SummarizeDoc():
global vectordb_p
global Choice
# pinecone.Index(index_name).delete(delete_all=True, namespace='')
# collection = vectordb_p.get()
# split_docs = process_documents([metadata['source'] for metadata in collection['metadatas']])
# split_docs = process_documents()
split_docs = process_documents_3()
tt = len(split_docs)
print(split_docs[tt-1])
sum_text=""
try:
if Choice in ListAgentWithRemoteGPT:
sum_chain = load_summarize_chain(GPTfake, chain_type='refine', verbose=True)
else:
sum_chain = load_summarize_chain(llm, chain_type='refine', verbose=True)
sum_text = sum_chain.run(split_docs)
return sum_text
except Exception as e:
print("SummarizeDoc error:", e)
# sum_text = "test sum"
class DB_Search(BaseTool):
name = "Vector_Database_Search"
description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
class DB_Search2(BaseTool):
name = "Vector Database Search"
description = "This is the internal vector database to search information firstly. If information is found, it is trustful."
def _run(self, query: str) -> str:
response, source = QAQuery_p(query)
# response = "test db_search feedback"
return response
def _arun(self, query: str):
raise NotImplementedError("N/A")
def Text2Sound(text):
speech_config = speechsdk.SpeechConfig(subscription=os.environ['SPEECH_KEY'], region=os.environ['SPEECH_REGION'])
audio_config = speechsdk.audio.AudioOutputConfig(use_default_speaker=True)
speech_config.speech_synthesis_voice_name='en-US-JennyNeural'
# speech_synthesizer = ""
speech_synthesizer = speechsdk.SpeechSynthesizer(speech_config=speech_config, audio_config=audio_config)
speech_synthesis_result = speech_synthesizer.speak_text_async(text).get()
# if speech_synthesis_result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
# print("Speech synthesized for text [{}]".format(text))
# elif speech_synthesis_result.reason == speechsdk.ResultReason.Canceled:
# cancellation_details = speech_synthesis_result.cancellation_details
# print("Speech synthesis canceled: {}".format(cancellation_details.reason))
# if cancellation_details.reason == speechsdk.CancellationReason.Error:
# if cancellation_details.error_details:
# print("Error details: {}".format(cancellation_details.error_details))
# print("Did you set the speech resource key and region values?")
print("test")
return speech_synthesis_result
pass
def get_azure_access_token():
azure_key = os.environ.get("SPEECH_KEY")
try:
response = requests.post(
"https://eastus.api.cognitive.microsoft.com/sts/v1.0/issuetoken",
headers={
"Ocp-Apim-Subscription-Key": azure_key
}
)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
# print (response.text)
return response.text
def text_to_speech_2(text):
global Audio_output
access_token = get_azure_access_token()
voice_name='en-US-AriaNeural'
if not access_token:
return None
try:
response = requests.post(
"https://eastus.tts.speech.microsoft.com/cognitiveservices/v1",
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/ssml+xml",
"X-MICROSOFT-OutputFormat": "riff-24khz-16bit-mono-pcm",
"User-Agent": "TextToSpeechApp",
},
data=f"""
{text}
""",
)
response.raise_for_status()
timestr = time.strftime("%Y%m%d-%H%M%S")
with open('sample-' + timestr + '.wav', 'wb') as audio:
audio.write(response.content)
print ("File Name ", audio.name)
# print (audio)
Audio_output.append(audio.name)
# return audio.name
return audio
except requests.exceptions.RequestException as e:
print(f"Error: {e}")
return None
def speech_to_text(Filename_Audio_input_single):
print("Start speech to text ....")
access_token = get_azure_access_token()
if not access_token:
return None
try:
endpoint = f"https://eastus.stt.speech.microsoft.com/speech/recognition/conversation/cognitiveservices/v1?language=en-US"
headers={
"Authorization": f"Bearer {access_token}",
"Content-Type": "audio/wav",}
response = requests.post(endpoint, headers=headers, data=open(Filename_Audio_input_single, "rb"))
print("Speech to Text Raw: ", response.text)
text_from_audio = response.text.split('DisplayText":"')[1].split('"}')[0]
# text_from_audio = response.text('DisplayText')
print("Speech to Text: ", text_from_audio)
return text_from_audio
except requests.exceptions.RequestException as e:
print(f"Error speech_to_text: {e}")
return None
Text2Sound_tool = Tool(
name = "Text_To_Sound_REST_API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Text2Sound_tool2 = Tool(
name = "Text To Sound REST API",
# func = Text2Sound,
func = text_to_speech_2,
description = "Useful when you need to convert text into sound file."
)
Text2Sound_tool_loc = Tool(
name = "Text To Sound API 2",
# func = Text2Sound,
func = text_to_speech_loc2,
description = "Useful when you need to convert text into sound file."
)
Wikipedia = WikipediaAPIWrapper()
Netsearch = DuckDuckGoSearchRun()
Python_REPL = PythonREPL()
wikipedia_tool = Tool(
name = "Wikipedia_Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool = Tool(
name = "Duckduckgo_Internet_Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool = Tool(
name = "Python_REPL",
func = Python_REPL.run,
description = "Useful when you need python script to answer questions. You should input python code."
)
wikipedia_tool2 = Tool(
name = "Wikipedia Search",
func = Wikipedia.run,
description = "Useful to search a topic, country or person when there is no availble information in vector database"
)
duckduckgo_tool2 = Tool(
name = "Duckduckgo Internet Search",
func = Netsearch.run,
description = "Useful to search information in internet when it is not available in other tools"
)
python_tool2 = Tool(
name = "Python REPL",
func = Python_REPL.run,
description = "Useful when you need python script to answer questions. You should input python code."
)
# tools = [DB_Search(), wikipedia_tool, duckduckgo_tool, python_tool]
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_KEY"] = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_BASE"] = os.environ["OPENAI_API_BASE"]
os.environ["OPENAI_API_VERSION"] = os.environ["OPENAI_API_VERSION"]
# os.environ["OPENAI_API_VERSION"] = "2023-05-15"
username = os.environ["username1"]
password = os.environ["password"]
SysLock = os.environ["SysLock"] # 0=unlock 1=lock
# deployment_name="Chattester"
chat = AzureChatOpenAI(
deployment_name=os.environ["deployment_name"],
temperature=0,
)
llm = chat
# llm = GPTfake
llm_math = LLMMathChain.from_llm(llm)
llm_math_2 = LLMMathChain.from_llm(GPTfake)
math_tool = Tool(
name ='Calculator',
func = llm_math.run,
description ='Useful for when you need to answer questions about math.'
)
math_tool_2 = Tool(
name ='Calculator',
func = llm_math_2.run,
description ='Useful for when you need to answer questions about math.'
)
# openai
tools = [DB_Search(), duckduckgo_tool, python_tool, math_tool, Text2Sound_tool]
tools2 = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool, Text2Sound_tool2]
tools_remote = [DB_Search2(), duckduckgo_tool2, wikipedia_tool2, python_tool2, math_tool_2, Text2Sound_tool_loc]
# tools = load_tools(["Vector Database Search","Wikipedia Search","Python REPL","llm-math"], llm=llm)
# Openai embedding
embeddings_openai = OpenAIEmbeddings(deployment="model_embedding", chunk_size=15)
# huggingface embedding model
embed_model_id = 'sentence-transformers/all-MiniLM-L6-v2'
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
device = 'cpu'
embeddings_miniLM = HuggingFaceEmbeddings(
model_name=embed_model_id,
model_kwargs={'device': device},
)
# embeddings = embeddings_openai
embeddings = embeddings_miniLM
# embeddings = OpenAIEmbeddings(deployment="model_embedding_2", chunk_size=15)
pinecone.init(
api_key = os.environ["pinecone_api_key"],
# environment='asia-southeast1-gcp-free',
environment='us-west4-gcp-free',
# openapi_config=openapi_config
)
# index_name = 'stla-baby'
global index_name
index_name = 'stla-back'
index = pinecone.Index(index_name)
# index.delete(delete_all=True, namespace='')
print(pinecone.whoami())
print(index.describe_index_stats())
"""
Answer the following questions as best you can with details.
You can always use tools to convert text to sound.
You must always check internal vector database first and try to answer the question based on the information in internal vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
You have access to the following tools:
Vector Database Search: This is the internal database to search information firstly. If information is found, it is trustful.
Duckduckgo Internet Search: Useful to search information in internet when it is not available in other tools.
Wikipedia Search: Useful to search a topic, country or person when there is no availble information in vector database
Python REPL: Useful when you need python to answer questions. You should input python code.
Calculator: Useful for when you need to answer questions about math.
Text To Sound: Useful when you need to convert text into sound file."""
PREFIX = """Answer the following questions as best you can with detail information and explanation.
You can always use tools to convert text to sound.
You must always check vector database first and try to answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
When the final answer has output files, you must output the **name** of the file.
You have access to the following tools:"""
PREFIX_2 = """You are a helpful AI assistant. You are capable to handle **any** task.\n\
Your mission is to answer the following request as best as you can with detail information and explanation.\n\
When you need information, you must always check vector database first and try to answer the question based on the information found in vector database only.\n\
Only when there is no information available from vector database, you can search information by using other tools.\n\
---\n\
You have access to the following tools:\n\
"""
FORMAT_INSTRUCTIONS = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
FORMAT_INSTRUCTIONS_2 = """Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [Vector Database Search, Duckduckgo Internet Search, Python REPL, Calculator]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question"""
'''
When you don't have enough information, you can use tools and you must define **Action** and **Action Input** after **Thought**.
'''
FORMAT_INSTRUCTIONS_3 = """
When you don't have enough information, you can use tools and you must use the following format to define **Thought**, **Action** and **Action Input**:\n\
'''\n\
"Thought": you should always think about what to do\n\
"Action": the action to take, should be one of [{tool_names}]\n\
"Action Input": the input to the action\n\
"Observation": the result of the action\n\
'''\n\
If **Thought**, **Action**, **Action Input** is missing in the response, you must re-write the response.\n\
---\n\
When you are able to provide final answer, you must use the following format to define **Final Answer** after **Thought**:\n\
'''\n\
"Thought": I now know the final answer\n\
"Final Answer": the final answer to the original input question\n\
'''\n\
If **Thought**, **Final Answer** is missing in the response, you must re-write the response.\n\
---\n\
Example of using tools:\n\
```\n\
Question: what is architecture ?\n\
---\n\
Thought: I need to check the definition of architecture in Vector Database\n\
Action: Vector Database Search\n\
Action Input: architecture\n\
```\n\
Example of final answer:\n\
```\n\
Question: Good morning\n\
---\n\
Thought: I need to make a greeting to user\n\
Final Answer: Hello, how can I do for you ?\n\
```\n\
"""
SUFFIX = """
Begin!
Request: {input}
Thought: {agent_scratchpad}"""
SUFFIX2 = """Begin!\n\
{chat_history}\n\
---\n\
Question: {input}\n\
---\n\
Thought: {agent_scratchpad}\n\
"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=PREFIX,
suffix=SUFFIX,
# suffix=SUFFIX2,
format_instructions=FORMAT_INSTRUCTIONS,
input_variables=["input", "agent_scratchpad"]
# input_variables=["input", "chat_history", "agent_scratchpad"]
)
prompthead_openai_1 = \
"""
You are a helpful AI assistant. Your mission is to answer the following request as best as you can with detail information and explanation.
You must always check vector database first and try to answer the request based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other tools.
"""
prompthead_openai_OR = \
"""
You are a helpful AI assistant.
"""
prompthead_openai = \
"""
You are a helpful AI assistant to answer the following questions as best as you can with detail information.
You must always search information in vector database first and answer the question based on the information in vector database only.
Only when there is no information available from vector database, you can search information by using other method.
"""
prompt_openai = OpenAIMultiFunctionsAgent.create_prompt(
system_message = SystemMessage(
content = prompthead_openai),
# extra_prompt_messages = [MessagesPlaceholder(variable_name="memory")],
)
input_variables=["input", "chat_history", "agent_scratchpad"]
agent_ZEROSHOT_REACT = initialize_agent(tools2, llm,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
agent_kwargs={
'prefix': PREFIX,
'format_instructions': FORMAT_INSTRUCTIONS,
'suffix': SUFFIX,
# 'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
agent_ZEROSHOT_REACT_2 = initialize_agent(tools_remote, GPTfake,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
memory = memory2,
agent_kwargs={
'prefix': PREFIX_2,
'format_instructions': FORMAT_INSTRUCTIONS_3,
'suffix': SUFFIX2,
'input_variables': input_variables,
},
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
agent_CONVERSATION = initialize_agent(tools_remote, GPTfake,
# agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION,
verbose = True,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
memory = memory2,
# agent_kwargs={
# 'prefix': PREFIX_2,
# 'format_instructions': FORMAT_INSTRUCTIONS_3,
# 'suffix': SUFFIX2,
# 'input_variables': input_variables,
# },
# input_variables = input_variables,
# agent_kwargs={
# 'prompt': prompt,
# }
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
llm_chain_2 = LLMChain(llm=GPTfake, prompt=prompt)
# print("Test LLM Chain", llm_chain_2({'agent_scratchpad':"", 'input':"what is PDP?"}))
# llm_chain_openai = LLMChain(llm=llm, prompt=prompt_openai, verbose=True)
agent_core = ZeroShotAgent(llm_chain=llm_chain, tools=tools2, verbose=True)
agent_core_2 = ZeroShotAgent(llm_chain=llm_chain_2, tools=tools2, verbose=True)
agent_core_openai = OpenAIMultiFunctionsAgent(llm=llm, tools=tools, prompt=prompt_openai, verbose=True)
# agent_core_openai_2 = OpenAIMultiFunctionsAgent(llm=GPTfake, tools=tools, prompt=prompt_openai, verbose=True)
agent_ZEROSHOT_AGENT = AgentExecutor.from_agent_and_tools(
agent=agent_core,
tools=tools2,
verbose=True,
# memory=memory,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
)
agent_ZEROSHOT_AGENT_2 = AgentExecutor.from_agent_and_tools(
agent=agent_core_2,
tools=tools_remote,
verbose=True,
# memory=memory,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
)
agent_OPENAI_MULTI = AgentExecutor.from_agent_and_tools(
agent=agent_core_openai,
tools=tools,
verbose=True,
# memory=memory_openai,
handle_parsing_errors = True,
max_iterations = int(os.environ["max_iterations"]),
early_stopping_method="generate",
)
# agent_OPENAI_MULTI_2 = AgentExecutor.from_agent_and_tools(
# agent=agent_core_openai_2,
# tools=tools,
# verbose=True,
# # memory=memory_openai,
# handle_parsing_errors = True,
# max_iterations = int(os.environ["max_iterations"]),
# early_stopping_method="generate",
# )
# agent.max_execution_time = int(os.getenv("max_iterations"))
# agent.handle_parsing_errors = True
# agent.early_stopping_method = "generate"
def SetAgent(Choice):
global agent
if Choice =='Zero Short Agent':
agent = agent_ZEROSHOT_AGENT
print("Set to:", Choice)
elif Choice =='Zero Short React':
agent = agent_ZEROSHOT_REACT
print("Set to:", Choice)
elif Choice =='OpenAI Multi':
agent = agent_OPENAI_MULTI
print("Set to:", Choice)
elif Choice =='Zero Short React 2':
agent = agent_ZEROSHOT_REACT_2
print("Set to:", Choice)
elif Choice =='Zero Short Agent 2':
agent = agent_ZEROSHOT_AGENT_2
print("Set to:", Choice)
elif Choice == "None":
agent = None
print("Set to:", Choice)
elif Choice =='Conversation Agent':
agent = agent_CONVERSATION
print("Set to:", Choice)
global agent
Choice = os.environ["agent_type"]
SetAgent(Choice)
# agent = agent_ZEROSHOT_AGENT
# print(agent.agent.llm_chain.prompt.template)
# print(agent.agent.llm_chain.prompt)
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
global vectordb_p
vectordb_p = Pinecone.from_existing_index(index_name, embeddings)
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# question = "what is LCDV ?"
# rr = vectordb.similarity_search(query=question, k=4)
# vectordb.similarity_search(question)
# print(type(rr))
# print(rr)
def chathmi(message, history1):
# response = "I don't know"
# print(message)
response, source = QAQuery_p(message)
time.sleep(0.3)
print(history1)
yield response
# yield history
def chathmi2(message, history):
global Audio_output
try:
output = agent.run(message)
time.sleep(0.3)
response = output
yield response
print ("response of chatbot:", response)
print ("\n")
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
dis_audio = []
dis_audio.append(file_name)
# yield dis_audio
yield dis_audio
except:
pass
if len(Audio_output) > 0:
# time.sleep(0.5)
# yield Audio_output
Audio_output = []
print("History: ", history)
print("-" * 20)
print("-" * 20)
except Exception as e:
print("error:", e)
# yield history
# chatbot = gr.Chatbot().style(color_map =("blue", "pink"))
# chatbot = gr.Chatbot(color_map =("blue", "pink"))
def func_upload_file(files, chat_history2):
global file_list_loaded
file_list_loaded = []
print(files)
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history2 = chat_history2 + [((file.name,), None)]
yield chat_history2
if os.environ["SYS_Upload_Enable"] == "1":
UpdateDb()
test_msg = ["Request Upload File into DB", "Operation Finished"]
chat_history2.append(test_msg)
yield chat_history2
def Summary_upload_file(files, chat_history2):
global file_list_loaded
file_list_loaded = []
for unit in files:
file_list_loaded.append(unit.name)
# file_list_loaded = files
print(file_list_loaded)
# print(chat_history)
# test_msg = ["Request Upload File into DB", "Operation Ongoing...."]
# chat_history.append(test_msg)
for file in files:
chat_history2 = chat_history2 + [((file.name,), None)]
yield chat_history2
if os.environ["SYS_Upload_Enable"] == "1":
sumtext = SummarizeDoc()
test_msg = [None, sumtext]
chat_history2.append(test_msg)
yield chat_history2
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
global record
record = []
def LinkElement(chatbot_history):
'''
Link chatbot display output with other UI
'''
global record
if record != chatbot_history:
last_response = chatbot_history[-1:][1]
print("last response:", last_response)
record = chatbot_history
print(chatbot_history)
# print("link element test")
else:
print("From linkelement: ", chatbot_history)
pass
def chathmi3(message, history2):
global last_request
global Filename_Chatbot
global agent
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2]
try:
if agent is not None:
response = agent.run(message)
elif agent is None:
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
# temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = CheckFileinResp(response)
print("file_name:", file_name)
if file_name != "N/A":
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield ["", history2]
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi3 error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def CheckFileinResp(response):
try:
pattern = r'sample-(?:\d{8})-(?:\d{6})\.wav'
result = re.findall(pattern, response)
print("result of check file in response:", result)
return result[-1]
except Exception as e:
print("No wav found:", e)
return "N/A"
def chathmi4(message, history2):
global last_request
global Filename_Chatbot
global agent
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
# yield ["", history2, "SUBMIT", "STOP"]
try:
if agent is not None:
response = agent.run(message)
elif agent is None:
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
# yield ["", history2, None, None]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
# temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = CheckFileinResp(response)
print("file_name:", file_name)
if file_name != "N/A":
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield ["", history2, "SUBMIT", "STOP"]
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi4 error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def chatremote(message, history2):
global last_request
global Filename_Chatbot
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
yield ["", history2, gr.update(visible = False), gr.update(visible = True)]
# yield ["", history2, "SUBMIT", "STOP"]
try:
# response = agent.run(message)
response = asyncio.run(start_playwright(message))
time.sleep(0.1)
history2 = history2 + [(None, response)]
yield ["", history2, gr.update(visible = True), gr.update(visible = False)]
# yield ["", history2, None, None]
print ("response of chatbot remote:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield ["", history2, "SUBMIT", "STOP"]
except:
print("No need to add file in chatbot")
except Exception as e:
print("chathmi remote error:", e)
# history = history + [(message, None)]
print("History2: ", history2)
print("-" * 20)
print("-" * 20)
def fake(message, history4):
pass
def clearall():
global memory2
try:
memory2.clear()
except Exception as e:
print("memory error:", e)
# memory_openai.clear()
global Filename_Chatbot
Filename_Chatbot = []
# file_path = "output.log"
# if os.path.isfile(file_path):
# os.remove(file_path)
# with open(file_path, "w") as file:
# print(f"File '{file_path}' has been created.")
return [[], gr.update(visible=True), gr.update(visible=False), []]
def retry(history3):
global last_request
print("last_request", last_request)
message = last_request
history3 = history3 + [(message, None)]
yield history3
try:
response = agent.run(message)
time.sleep(0.1)
history3 = history3 + [(None, response)]
print ("response of chatbot:", response)
yield history3
# real_content = response[-1:]
# print("real_content", real_content)
try:
temp = response.split("(sandbox:/")[1] # (sandbox:/sample-20230805-0807.wav)
file_name = temp.split(")")[0]
print("file_name:", file_name)
history3 = history3 + [(None, (file_name,))]
yield history3
except:
print("No need to add file in chatbot")
except Exception as e:
print("chathmi3 error:", e)
# yield chathmi3(last_request, chatbot_history)
def display_input(message, history2):
global last_request
print("Input Message:", message)
last_request = message
history2 = history2 + [(message, None)]
return history2
def Inference_Agent(history_inf):
global last_request
message = last_request
try:
response = agent.run(message)
time.sleep(0.1)
history_inf = history_inf + [(None, response)]
return ["",history_inf]
except Exception as e:
print("error:", e)
def ClearText():
return ""
def playsound1():
global Filename_Chatbot
print("playsound1: ", Filename_Chatbot)
try:
if Filename_Chatbot.split(".")[1] == 'wav':
soundfilename = Filename_Chatbot
print("soundfilename:", soundfilename)
# return None
# Filename_Chatbot = ""
return gr.update(value = soundfilename)
# return soundfilename
# yield soundfilename
except Exception as e:
print("playsound error:", e)
return None
def playsound2():
global Filename_Chatbot
try:
if Filename_Chatbot.split(".")[1] == 'wav':
soundfilename = Filename_Chatbot
print("soundfilename:", soundfilename)
# return None
# playsound(soundfilename)
mixer.init()
mixer.music.load(soundfilename)
mixer.music.play()
except Exception as e:
print("playsound2 error:", e)
return None
def HMI_Runing():
return [gr.update(visible=False), gr.update(visible=True)]
def HMI_Wait():
return [gr.update(visible=True), gr.update(visible=False)]
def ClearAudio():
print("clear audio ...")
return None
def Text2Sound_HMI():
global last_answer
global Filename_Chatbot
global Audio_output
print("Last answer in Text2Sound_HMI", last_answer)
# text_to_speech_2(last_answer)
text_to_speech_loc2(last_answer)
Filename_Chatbot = Audio_output[-1]
print("Filename_Chatbot in Text2Sound_HMI", Filename_Chatbot)
# try:
# if Filename_Chatbot.split(".")[1] == 'wav':
# soundfilename = Filename_Chatbot
# print("soundfilename:", soundfilename)
# # return None
# return gr.update(value = soundfilename)
# # return soundfilename
# # yield soundfilename
# except Exception as e:
# print("playsound error:", e)
# return None
def UpdateChatbot(Running_history):
timestr = time.strftime("%Y-%m-%d-%H:%M:%S")
Running_history = Running_history + [(None, 'Timestamp: '+timestr)]
yield Running_history
WelcomeStr = """
This is AI Assistant powered by MECH Core Team.
It is connected remotely with GPT4. The following function is available for you.
1. Free Chat
2. Search Information and Engineering Data: Vector Database + Internet
3. Make specific task with tools:
- Text to Sound
- Sound to Text
- Doc summary
- Code interpret (Under Construction)
- Text to Image (forecast)
"""
Running_history = Running_history + [(None, WelcomeStr)]
yield Running_history
global last_answer
last_answer = ""
def SingleTalk(WavFile, history5):
global last_answer
global Filename_Chatbot
ConvertText = speech_to_text_loc(WavFile)
# ConvertText = speech_to_text(WavFile)
history5 = history5 + [(ConvertText, None)]
yield [None, None, history5]
message = ConvertText
history2 = history5
try:
response = agent.run(message)
time.sleep(0.1)
last_answer = response
history2 = history2 + [(None, response)]
yield [None, None, history2]
# yield ["", history2, None, None]
print ("response of chatbot:", response)
# real_content = response[-1:]
# print("real_content", real_content)
try:
file_name = CheckFileinResp(response)
print("file_name:", file_name)
if file_name != "N/A":
history2 = history2 + [(None, (file_name,))]
Filename_Chatbot = file_name
yield [None, None, history2]
except Exception as e:
print("No need to add file in chatbot:", e)
except Exception as e:
print("chathmi3 SingleTalk error:", e)
# history = history + [(message, None)]
print("History2 in Simple Talk: ", history2)
print("-" * 20)
print("-" * 20)
with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **SUBMIT** to see the output.")
# main = gr.ChatInterface(
# fake,
# title="STLA BABY - YOUR FRIENDLY GUIDE",
# description= "v0.3: Powered by MECH Core Team",
# )
# main.textbox.submit(chathmi3, [main.textbox, main.chatbot], [main.textbox, main.chatbot])
with gr.Column() as main2:
title = gr.Markdown("""#
STLA BABY - YOUR FRIENDLY GUIDE
v0.6.3: Powered by MECH Core Team - GPT4 REMOTE MODE"""),
chatbot = gr.Chatbot()
with gr.Row():
inputtext = gr.Textbox(
scale= 4,
label="",
placeholder = "Input Your Question",
show_label = False,
)
submit_button = gr.Button("SUBMIT", variant="primary", visible=True)
stop_button = gr.Button("STOP", variant='stop', visible=False)
with gr.Row():
agentchoice = gr.Dropdown(
choices=['Zero Short Agent','Zero Short React','OpenAI Multi',
'Zero Short React 2','Zero Short Agent 2','None','Conversation Agent'],
label="SELECT AI AGENT",
scale= 2,
show_label = True,
value="Zero Short React 2",
)
voice_input = gr.Audio(
source="microphone",
type="filepath",
scale= 1,
label= "INPUT",
)
voice_output = gr.Audio(
source="microphone",
type="filepath",
scale= 1,
interactive=False,
autoplay= True,
label= "OUTPUT",
)
upload_button = gr.UploadButton("✡️ INGEST DB", file_count="multiple", scale= 0, variant="secondary")
summary_file_button = gr.UploadButton("📁 SUM DOC", file_count="multiple", scale= 0, variant="secondary")
retry_button = gr.Button("RETRY")
clear_button = gr.Button("CLEAR")
with gr.Accordion(
label = "LOGS",
open = False,
):
# logs = gr.Textbox()
frash_logs = gr.Button("Update Logs ...")
logs = gr.Textbox(max_lines = 25)
"""
GUI Func
"""
# upload_button.upload(func_upload_file, [upload_button, main.chatbot], main.chatbot)
retry_button.click(retry, chatbot, chatbot).success(playsound1, None, voice_output).\
success(HMI_Wait, None, [submit_button, stop_button])#.\
# success(ClearAudio, None, voice_output)
# inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
# then(playsound, None, voice_output)
# inf1 = inputtext.submit(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
# then(HMI_Runing, None, [submit_button, stop_button]).\
# then(playsound, None, voice_output).\
# then(HMI_Wait, None, [submit_button, stop_button])
# inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button])
''' open ai | new'''
inf4 = inputtext.submit(chathmi4, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
success(playsound1, None, voice_output)#.\
# success(ClearAudio, None, voice_output)
''' Test '''
# inf4 = inputtext.submit(chatremote, [inputtext, chatbot], [inputtext, chatbot, submit_button, stop_button]).\
# success(playsound1, None, voice_output)
inf3 = submit_button.click(chathmi3, [inputtext, chatbot], [inputtext, chatbot]).\
success(HMI_Runing, None, [submit_button, stop_button]).\
success(playsound1, None, voice_output).\
success(HMI_Wait, None, [submit_button, stop_button])#.\
# success(ClearAudio, None, voice_output)
# inf2 = inputtext.submit(display_input, [inputtext, chatbot], chatbot).\
# then(Inference_Agent, chatbot, [inputtext, chatbot])
stop_button.click(read_logs, None, logs, cancels=[inf4,inf3]).\
then(HMI_Wait, None, [submit_button, stop_button])
# stop_button.click(read_logs, None, logs, cancels=[inf2])
upload_button.upload(func_upload_file, [upload_button, chatbot], chatbot)
sum1 = summary_file_button.upload(Summary_upload_file, [summary_file_button, chatbot], chatbot)
agentchoice.change(SetAgent, agentchoice, None)
frash_logs.click(read_logs, None, logs)
voice_input.stop_recording(SingleTalk, [voice_input, chatbot], [voice_input, voice_output, chatbot]).\
success(Text2Sound_HMI,None,None).\
success(playsound1, None, voice_output) #.\
# success(HMI_Wait, None, [submit_button, stop_button]).\
# success(ClearAudio, None, voice_output)
clear_button.click(clearall, None, [chatbot, submit_button, stop_button], voice_output, cancels=[inf4,inf3,sum1])
# voice_output.end(ClearAudio, None, voice_output)
# def clear_voice():
# print("clear audio ...")
# voice_output.clear()
# voice_output.play(clear_voice, None, None)
# demo.load(read_logs, None, logs, every=1)
demo.load(UpdateChatbot, chatbot, chatbot)
# load(UpdateChatbot, chatbot, chatbot, every=5)
# demo = gr.Interface(
# chathmi,
# ["text", "state"],
# [chatbot, "state"],
# allow_flagging="never",
# )
def CreatDb_P():
global vectordb_p
index_name = 'stla-baby'
loader = DirectoryLoader('./documents', glob='**/*.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
split_docs = text_splitter.split_documents(documents)
print(split_docs)
pinecone.Index(index_name).delete(delete_all=True, namespace='')
vectordb_p = Pinecone.from_documents(split_docs, embeddings, index_name = "stla-baby")
print("Pinecone Updated Done")
print(index.describe_index_stats())
def QAQuery_p(question: str):
global vectordb_p
global agent
global Choice
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb_p.as_retriever()
retriever.search_kwargs['k'] = int(os.environ["search_kwargs_k"])
# retriever.search_kwargs['fetch_k'] = 100
# if agent == agent_ZEROSHOT_REACT_2 or agent == agent_ZEROSHOT_AGENT_2:
if Choice in ListAgentWithRemoteGPT:
print("--------------- QA with Remote --------------")
qa = RetrievalQA.from_chain_type(llm=GPTfake, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
else:
print("--------------- QA with API --------------")
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff",
retriever=retriever, return_source_documents = True,
verbose = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
# print("Question:", question)
# print("Answer:", res)
# print("Answer:", res['result'])
print("-" * 20)
# print("Source:", res['source_documents'])
response = res['result']
# response = res['source_documents']
source = res['source_documents']
return response, source
# def CreatDb():
# '''
# Funtion to creat chromadb DB based on with all docs
# '''
# global vectordb
# loader = DirectoryLoader('./documents', glob='**/*.txt')
# documents = loader.load()
# text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=200)
# split_docs = text_splitter.split_documents(documents)
# print(split_docs)
# vectordb = Chroma.from_documents(split_docs, embeddings, persist_directory='db')
# vectordb.persist()
def QAQuery(question: str):
global vectordb
# vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
retriever = vectordb.as_retriever()
retriever.search_kwargs['k'] = 3
# retriever.search_kwargs['fetch_k'] = 100
qa = RetrievalQA.from_chain_type(llm=chat, chain_type="stuff", retriever=retriever, return_source_documents = True)
# qa = VectorDBQA.from_chain_type(llm=chat, chain_type="stuff", vectorstore=vectordb, return_source_documents=True)
# res = qa.run(question)
res = qa({"query": question})
print("-" * 20)
print("Question:", question)
# print("Answer:", res)
print("Answer:", res['result'])
print("-" * 20)
print("Source:", res['source_documents'])
response = res['result']
return response
# Used to complete content
def completeText(Text):
deployment_id="Chattester"
prompt = Text
completion = openai.Completion.create(deployment_id=deployment_id,
prompt=prompt, temperature=0)
print(f"{prompt}{completion['choices'][0]['text']}.")
# Used to chat
def chatText(Text):
deployment_id="Chattester"
conversation = [{"role": "system", "content": "You are a helpful assistant."}]
user_input = Text
conversation.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(messages=conversation,
deployment_id="Chattester")
print("\n" + response["choices"][0]["message"]["content"] + "\n")
if __name__ == '__main__':
# chatText("what is AI?")
# CreatDb()
# QAQuery("what is COFOR ?")
# CreatDb_P()
# QAQuery_p("what is PDP ?")
# question = "what is PDP?"
# output = asyncio.run(start_playwright(question))
# asyncio.run(TestCodeInterpret('Plot the bitcoin chart of 2023 YTD'))
if SysLock == "1":
demo.queue(concurrency_count=3).launch(auth=(username, password), server_name="0.0.0.0", server_port=7860)
else:
demo.queue(concurrency_count=3).launch(server_name="0.0.0.0", server_port=7860)
pass