OverDriveLee's picture
Update app.py
4bd0da3
raw
history blame
3.41 kB
import gradio as gr
from PIL import Image
import numpy as np
import cv2
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate
size = 128
def preprocess_image(image, size=128):
image = image.resize((size, size))
image = image.convert("L")
image = np.array(image) / 255.0
return image
def conv_block(input, num_filters):
conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(input)
conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(conv)
return conv
def encoder_block(input, num_filters):
conv = conv_block(input, num_filters)
pool = MaxPooling2D((2, 2))(conv)
return conv, pool
def decoder_block(input, skip_features, num_filters):
uconv = Conv2DTranspose(num_filters, (2, 2), strides=2, padding="same")(input)
con = concatenate([uconv, skip_features])
conv = conv_block(con, num_filters)
return conv
def build_model(input_shape):
input_layer = Input(input_shape)
s1, p1 = encoder_block(input_layer, 64)
s2, p2 = encoder_block(p1, 128)
s3, p3 = encoder_block(p2, 256)
s4, p4 = encoder_block(p3, 512)
b1 = conv_block(p4, 1024)
d1 = decoder_block(b1, s4, 512)
d2 = decoder_block(d1, s3, 256)
d3 = decoder_block(d2, s2, 128)
d4 = decoder_block(d3, s1, 64)
output_layer = Conv2D(1, 1, padding="same", activation="sigmoid")(d4)
model = Model(input_layer, output_layer, name="U-Net")
model.load_weights('BreastCancerSegmentation.h5')
return model
def preprocess_image(image, size=128):
image = cv2.resize(image, (size, size))
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
image = image / 255.
return image
def segment(image):
image = preprocess_image(image, size=size)
image = np.expand_dims(image, 0)
output = model.predict(image, verbose=0)
mask_image = output[0]
mask_image = np.squeeze(mask_image, -1)
mask_image *= 255
mask_image = mask_image.astype(np.uint8)
mask_image = Image.fromarray(mask_image).convert("L")
#Porcentaje de 0
positive_pixels = np.count_nonzero(mask_image)
total_pixels = mask_image.size[0] * mask_image.size[1]
percentage = (positive_pixels / total_pixels) * 100
# Calcular los porcentajes de 0 y 1
class_0_percentage = 100 - percentage
class_1_percentage = percentage
return mask_image, class_0_percentage, class_1_percentage
if __name__ == "__main__":
model = build_model(input_shape=(size, size, 1))
gr.Interface(
fn=segment,
inputs="image",
outputs=[
gr.Image(type="pil", label="Breast Cancer Mask"),
gr.Number(label="Class 0 Percentage"),
gr.Number(label="Class 1 Percentage")
],
examples=[["benign(10).png"], ["benign(109).png"]],
title = '<h1 style="text-align: center;">Breast Cancer Ultrasound Image Segmentation! πŸ’ </h1>',
description = """
Check out this exciting development in the field of breast cancer diagnosis and treatment!
A demo of Breast Cancer Ultrasound Image Segmentation has been developed.
Upload image file, or try out one of the examples below! πŸ™Œ
"""
).launch(debug=True)