import gradio as gr from PIL import Image import numpy as np import cv2 from keras.models import Model from keras.layers import Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate size = 128 def preprocess_image(image, size=128): image = image.resize((size, size)) image = image.convert("L") image = np.array(image) / 255.0 return image def conv_block(input, num_filters): conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(input) conv = Conv2D(num_filters, (3, 3), activation="relu", padding="same", kernel_initializer='he_normal')(conv) return conv def encoder_block(input, num_filters): conv = conv_block(input, num_filters) pool = MaxPooling2D((2, 2))(conv) return conv, pool def decoder_block(input, skip_features, num_filters): uconv = Conv2DTranspose(num_filters, (2, 2), strides=2, padding="same")(input) con = concatenate([uconv, skip_features]) conv = conv_block(con, num_filters) return conv def build_model(input_shape): input_layer = Input(input_shape) s1, p1 = encoder_block(input_layer, 64) s2, p2 = encoder_block(p1, 128) s3, p3 = encoder_block(p2, 256) s4, p4 = encoder_block(p3, 512) b1 = conv_block(p4, 1024) d1 = decoder_block(b1, s4, 512) d2 = decoder_block(d1, s3, 256) d3 = decoder_block(d2, s2, 128) d4 = decoder_block(d3, s1, 64) output_layer = Conv2D(1, 1, padding="same", activation="sigmoid")(d4) model = Model(input_layer, output_layer, name="U-Net") model.load_weights('BreastCancerSegmentation.h5') return model def preprocess_image(image, size=128): image = cv2.resize(image, (size, size)) image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) image = image / 255. return image def segment(image): image = preprocess_image(image, size=size) image = np.expand_dims(image, 0) output = model.predict(image, verbose=0) mask_image = output[0] mask_image = np.squeeze(mask_image, -1) mask_image *= 255 mask_image = mask_image.astype(np.uint8) mask_image = Image.fromarray(mask_image).convert("L") #Porcentaje de 0 positive_pixels = np.count_nonzero(mask_image) total_pixels = mask_image.size[0] * mask_image.size[1] percentage = (positive_pixels / total_pixels) * 100 # Calcular los porcentajes de 0 y 1 class_0_percentage = 100 - percentage class_1_percentage = percentage return mask_image, class_0_percentage, class_1_percentage if __name__ == "__main__": model = build_model(input_shape=(size, size, 1)) gr.Interface( fn=segment, inputs="image", outputs=[ gr.Image(type="pil", label="Breast Cancer Mask"), gr.Number(label="Class 0 Percentage"), gr.Number(label="Class 1 Percentage") ], examples=[["benign(10).png"], ["benign(109).png"]], title = '