import numpy as np from keras.models import load_model import tensorflow as tf from tensorflow.keras.preprocessing import image import matplotlib.pyplot as plt import os import streamlit as st from styling import footer st.cache(allow_output_mutation=True) st.title("TB Image Classifier") # loading model model = load_model('tb_model.h5') # loading the imaage file = st.file_uploader( "Upload the image", type=["png", "jpg"], accept_multiple_files=False, key=None, help=None, on_change=None, args=None, kwargs=None, ) run = st.button( "Make Prediction", key=None, help=None, on_click=None, args=None, kwargs=None ) st.subheader("This app classifies an x-ray image if it has TB or not") # image laoder def load_image(img_path, img_size, show=False): img = image.load_img(img_path, target_size=img_size) img_tensor = image.img_to_array(img) img_tensor = np.expand_dims(img_tensor, axis=0) # expanding image tensor img_tensor = img_tensor / 255.0 # scaling the image_T if show: plt.imshow(img_tensor[0]) plt.axis("off") plt.show() return img_tensor img_size = (300, 300) #img_path = "inference image from medscape.jpg" classes = ["Negative", "Positive"]#["Normal", "Tuberculosis"] if __name__ == "__main__": ## load img footer() if run == True: if file is not None: img = load_image(file, img_size) pred = model.predict(img) output = classes[round(pred[0][0])] st.subheader(f"The image is {output} for TB") else: st.write("Please upload an image first") # st.image(file)