Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
5 |
+
|
6 |
+
#workaround for unnecessary flash_attn requirement
|
7 |
+
from unittest.mock import patch
|
8 |
+
from transformers.dynamic_module_utils import get_imports
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
|
12 |
+
if not str(filename).endswith("modeling_florence2.py"):
|
13 |
+
return get_imports(filename)
|
14 |
+
imports = get_imports(filename)
|
15 |
+
imports.remove("flash_attn")
|
16 |
+
return imports
|
17 |
+
|
18 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
|
19 |
+
model = AutoModelForCausalLM.from_pretrained("Oysiyl/Florence-2-FT-OCR-Cauldron-IAM", attn_implementation="sdpa", trust_remote_code=True)
|
20 |
+
|
21 |
+
processor = AutoProcessor.from_pretrained("Oysiyl/Florence-2-FT-OCR-Cauldron-IAM", trust_remote_code=True)
|
22 |
+
|
23 |
+
prompt = "OCR"
|
24 |
+
|
25 |
+
|
26 |
+
def predict(im):
|
27 |
+
composite_image = Image.fromarray(im['composite'].astype(np.uint8)).convert("RGBA")
|
28 |
+
background_image = Image.new("RGBA", composite_image.size, (255, 255, 255, 255))
|
29 |
+
image = Image.alpha_composite(background_image, composite_image).convert("RGB")
|
30 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
31 |
+
|
32 |
+
generated_ids = model.generate(
|
33 |
+
input_ids=inputs["input_ids"],
|
34 |
+
pixel_values=inputs["pixel_values"],
|
35 |
+
max_new_tokens=1024,
|
36 |
+
do_sample=False,
|
37 |
+
num_beams=3
|
38 |
+
)
|
39 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
40 |
+
|
41 |
+
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
42 |
+
|
43 |
+
|
44 |
+
return parsed_answer[prompt]
|
45 |
+
|
46 |
+
|
47 |
+
sketchpad = gr.ImageEditor(label="Draw something or upload an image")
|
48 |
+
|
49 |
+
interface = gr.Interface(
|
50 |
+
predict,
|
51 |
+
inputs=sketchpad,
|
52 |
+
outputs='text',
|
53 |
+
theme='gradio/monochrome',
|
54 |
+
title="Handwritten Recognition using Florence 2 model finetuned on IAM subset from HuggingFace Cauldron dataset",
|
55 |
+
description="<p style='text-align: center'>Draw a text or upload an image with handwritten notes and let's model try to guess the text!</p>",
|
56 |
+
article = "<p style='text-align: center'>Handwritten Text Recognition | Demo Model</p>")
|
57 |
+
interface.launch(debug=True)
|