import os import gradio as gr import torch from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #workaround for unnecessary flash_attn requirement from unittest.mock import patch from transformers.dynamic_module_utils import get_imports import numpy as np def fixed_get_imports(filename: str | os.PathLike) -> list[str]: if not str(filename).endswith("modeling_florence2.py"): return get_imports(filename) imports = get_imports(filename) imports.remove("flash_attn") return imports with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement model = AutoModelForCausalLM.from_pretrained("Oysiyl/Florence-2-FT-OCR-Cauldron-IAM", attn_implementation="sdpa", trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained("Oysiyl/Florence-2-FT-OCR-Cauldron-IAM", trust_remote_code=True) prompt = "OCR" def predict(im): composite_image = Image.fromarray(im['composite'].astype(np.uint8)).convert("RGBA") background_image = Image.new("RGBA", composite_image.size, (255, 255, 255, 255)) image = Image.alpha_composite(background_image, composite_image).convert("RGB") inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) return parsed_answer[prompt] sketchpad = gr.ImageEditor(label="Draw something or upload an image") interface = gr.Interface( predict, inputs=sketchpad, outputs='text', theme='gradio/monochrome', title="Handwritten Recognition using Florence 2 model finetuned on IAM subset from HuggingFace Cauldron dataset", description="
Draw a text or upload an image with handwritten notes and let's model try to guess the text!
", article = "Handwritten Text Recognition | Demo Model
") interface.launch(debug=True)