Spaces:
Sleeping
Sleeping
File size: 7,077 Bytes
a716434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
from typing import Optional
from threading import Thread
import torch
import gradio as gr
from langchain.llms.base import LLM
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import Pinecone
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer, pipeline
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def initialize_model_and_tokenizer(model_name="mistralai/Mistral-7B-Instruct-v0.2"):
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map='auto',
quantization_config=quantization_config
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
def init_chain(model, tokenizer, db, embed, temp, max_new_tokens, top_p, top_k, r_penalty):
class CustomLLM(LLM):
"""Streamer Object"""
streamer: Optional[TextIteratorStreamer] = None
def _call(self, prompt, stop=None, run_manager=None) -> str:
self.streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, Timeout=5)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to('cuda')
generate_kwargs = dict(
temperature=float(temp),
max_new_tokens=int(max_new_tokens),
top_p=float(top_p),
top_k=int(top_k),
repetition_penalty=float(r_penalty),
do_sample=True
)
kwargs = dict(input_ids=input_ids, streamer=self.streamer, **generate_kwargs)
thread = Thread(target=model.generate, kwargs=kwargs)
thread.start()
return ""
@property
def _llm_type(self) -> str:
return "custom"
llm = CustomLLM()
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
questionprompt = PromptTemplate.from_template(
"""<s>[INST]
Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
CONTEXT: {context}
CHAT HISTORY: {chat_history}
QUESTION: {question}
Helpful Answer:
[/INST]
"""
)
llm_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=db.as_retriever(search_kwargs={"k": 5}),
memory=memory,
condense_question_prompt=questionprompt,
)
return llm_chain, llm
index_name = "resume-demo"
queries = [["Which masters degree Dmytro Kisil has?"],
["Which amount of salary does Dmytro Kisil is looking for?"],
["How long does Dmytro Kisil looking for a job?"],
["Why Dmytro Kisil moved to Netherlands?"],
["When Dmytro Kisil left Ukraine?"],
["Where Dmytro Kisil live now?"],
["How much years of working experience in total Dmytro Kisil has?"],
["How fast Dmytro Kisil can start working for my company?"]]
embed = HuggingFaceBgeEmbeddings(model_name='BAAI/bge-small-en-v1.5')
db = Pinecone.from_existing_index(index_name, embed)
model, tokenizer = initialize_model_and_tokenizer(model_name="mistralai/Mistral-7B-Instruct-v0.2")
with gr.Blocks() as demo:
with gr.Column():
chatbot = gr.Chatbot()
with gr.Row():
msg = gr.Textbox(scale=9)
submit_b = gr.Button("Submit", scale=1)
with gr.Row():
retry_b = gr.Button("Retry")
undo_b = gr.Button("Undo")
clear_b = gr.Button("Clear")
examples = gr.Examples(queries, msg)
with gr.Accordion("Additional options", open=False):
temp = gr.Slider(
label="Temperature",
value=0.01,
minimum=0.01,
maximum=1.00,
step=0.01,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=1024,
minimum=64,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.00,
maximum=1.00,
step=0.01,
interactive=True,
info="Higher values sample more low-probability tokens",
)
top_k = gr.Slider(
label="Top-k",
value=40,
minimum=0,
maximum=100,
step=1,
interactive=True,
info="select from top 0 tokens (because zero, relies on top_p)",
)
r_penalty = gr.Slider(
label="Repetition penalty",
value=1.15,
minimum=1.0,
maximum=2.0,
step=0.01,
interactive=True,
info="Penalize repeated tokens",
)
def user(user_message, history):
return "", history + [[user_message, None]]
def undo(history):
return history[:-1].copy()
def retry(user_message, history):
try:
prev_user_message = history[-1][0]
except:
prev_user_message = ""
return prev_user_message, history + [[prev_user_message, None]]
def bot(history, temp, max_new_tokens, top_p, top_k, r_penalty):
llm_chain, llm = init_chain(model, tokenizer, db, embed, temp, max_new_tokens, top_p, top_k, r_penalty)
llm_chain.run(question=history[-1][0])
history[-1][1] = ""
for character in llm.streamer:
history[-1][1] += character
yield history
llm_chain, llm = init_chain(model, tokenizer, db, embed, temp, max_new_tokens, top_p, top_k, r_penalty)
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot, temp, max_new_tokens, top_p, top_k, r_penalty], chatbot)
submit_b.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot, temp, max_new_tokens, top_p, top_k, r_penalty], chatbot)
retry_b.click(retry, [msg, chatbot], [msg, chatbot], queue=False).then(bot, [chatbot, temp, max_new_tokens, top_p, top_k, r_penalty], chatbot)
clear_b.click(lambda: None, None, chatbot, queue=False)
undo_b.click(undo, chatbot, chatbot, queue=False)
demo.queue()
demo.launch(share=True) |