Spaces:
Sleeping
Sleeping
File size: 7,469 Bytes
65ced49 22dd958 6ee980f 22dd958 6ee980f 22dd958 65ced49 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 6ee980f 22dd958 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from flask import Flask, request, jsonify, render_template_string
import time
# Flaskアプリケーションの設定
app = Flask(__name__)
# デバイスの設定
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# トークナイザーとモデルの読み込み
tokenizer = AutoTokenizer.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("inu-ai/alpaca-guanaco-japanese-gpt-1b").to(device)
# 定数
MAX_ASSISTANT_LENGTH = 100
MAX_INPUT_LENGTH = 1024
INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n入力:\n{input}\n[SEP]\n応答:\n'
NO_INPUT_PROMPT = r'<s>\n以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n[SEP]\n指示:\n{instruction}\n[SEP]\n応答:\n'
# HTMLテンプレート
HTML_TEMPLATE = """
<!DOCTYPE html>
<html lang="ja">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Chat Interface</title>
<style>
body { font-family: Arial, sans-serif; }
.container { max-width: 600px; margin: auto; padding: 20px; }
.chat-box { border: 1px solid #ccc; padding: 10px; height: 300px; overflow-y: scroll; }
.chat-entry { margin-bottom: 10px; }
.chat-entry.user { text-align: right; }
.input-group { display: flex; }
.input-group input { flex: 1; padding: 10px; border: 1px solid #ccc; border-radius: 4px; }
.input-group button { padding: 10px; border: none; background-color: #28a745; color: white; cursor: pointer; }
.input-group button:hover { background-color: #218838; }
</style>
</head>
<body>
<div class="container">
<h1>Chat Interface</h1>
<div class="chat-box" id="chat-box"></div>
<div class="input-group">
<input type="text" id="user-input" placeholder="質問を入力してください...">
<button onclick="sendMessage()">送信</button>
</div>
</div>
<script>
const chatBox = document.getElementById('chat-box');
const userInput = document.getElementById('user-input');
let conversationHistory = [];
function addMessageToChat(role, message) {
const entry = document.createElement('div');
entry.className = 'chat-entry ' + role;
entry.textContent = role === 'user' ? 'User: ' + message : 'Assistant: ' + message;
chatBox.appendChild(entry);
chatBox.scrollTop = chatBox.scrollHeight;
}
function sendMessage() {
const message = userInput.value.trim();
if (message === '') return;
addMessageToChat('user', message);
userInput.value = '';
fetch('/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
role_instruction: [
"User:あなたは「ずんだもん」なのだ。東北ずん子の武器である「ずんだアロー」に変身する妖精またはマスコットなのだ。一人称は「ボク」で語尾に「なのだ」を付けてしゃべるのだ。",
"Assistant:了解したのだ!"
],
conversation_history: conversationHistory,
new_conversation: message
})
})
.then(response => response.json())
.then(data => {
const assistantMessage = data.response.split('Assistant:')[1].trim();
addMessageToChat('assistant', assistantMessage);
conversationHistory.push('User:' + message);
conversationHistory.push('Assistant:' + assistantMessage);
})
.catch(error => {
console.error('Error:', error);
alert('エラーが発生しました。コンソールを確認してください。');
});
}
</script>
</body>
</html>
"""
def prepare_input(role_instruction, conversation_history, new_conversation):
"""入力テキストを整形する関数"""
instruction = "".join([f"{text}\n" for text in role_instruction])
instruction += "\n".join(conversation_history)
input_text = f"User:{new_conversation}"
return INPUT_PROMPT.format(instruction=instruction, input=input_text)
def format_output(output):
"""生成された出力を整形する関数"""
return output.lstrip("<s>").rstrip("</s>").replace("[SEP]", "").replace("\\n", "\n")
def trim_conversation_history(conversation_history, max_length):
"""会話履歴を最大長に収めるために調整する関数"""
while len(conversation_history) > 2 and sum([len(tokenizer.encode(text, add_special_tokens=False)) for text in conversation_history]) + max_length > MAX_INPUT_LENGTH:
conversation_history.pop(0)
conversation_history.pop(0)
return conversation_history
def generate_response(role_instruction, conversation_history, new_conversation):
"""新しい会話に対する応答を生成する関数"""
conversation_history = trim_conversation_history(conversation_history, MAX_ASSISTANT_LENGTH)
input_text = prepare_input(role_instruction, conversation_history, new_conversation)
token_ids = tokenizer.encode(input_text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
min_length=len(token_ids[0]),
max_length=min(MAX_INPUT_LENGTH, len(token_ids[0]) + MAX_ASSISTANT_LENGTH),
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
bad_words_ids=[[tokenizer.unk_token_id]]
)
output = tokenizer.decode(output_ids.tolist()[0])
formatted_output_all = format_output(output)
response = f"Assistant:{formatted_output_all.split('応答:')[-1].strip()}"
conversation_history.append(f"User:{new_conversation}".replace("\n", "\\n"))
conversation_history.append(response.replace("\n", "\\n"))
return formatted_output_all, response
@app.route('/')
def home():
"""ホームページをレンダリング"""
return render_template_string(HTML_TEMPLATE)
@app.route('/generate', methods=['POST'])
def generate():
"""Flaskエンドポイント: /generate"""
data = request.json
role_instruction = data.get('role_instruction', [])
conversation_history = data.get('conversation_history', [])
new_conversation = data.get('new_conversation', "")
if not role_instruction or not new_conversation:
return jsonify({"error": "role_instruction and new_conversation are required fields"}), 400
formatted_output_all, response = generate_response(role_instruction, conversation_history, new_conversation)
return jsonify({"response": response, "conversation_history": conversation_history})
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0", port=7860)
|